Arbitrary-precision arithmeticIn computer science, arbitrary-precision arithmetic, also called bignum arithmetic, multiple-precision arithmetic, or sometimes infinite-precision arithmetic, indicates that calculations are performed on numbers whose digits of precision are limited only by the available memory of the host system. This contrasts with the faster fixed-precision arithmetic found in most arithmetic logic unit (ALU) hardware, which typically offers between 8 and 64 bits of precision.
Numerical integrationIn analysis, numerical integration comprises a broad family of algorithms for calculating the numerical value of a definite integral, and by extension, the term is also sometimes used to describe the numerical solution of differential equations. This article focuses on calculation of definite integrals. The term numerical quadrature (often abbreviated to quadrature) is more or less a synonym for numerical integration, especially as applied to one-dimensional integrals.
Family valuesFamily values, sometimes referred to as familial values, are traditional or cultural values that pertain to the family's structure, function, roles, beliefs, attitudes, and ideals. In the social sciences and U.S. political discourse, the conventional term "traditional family" describes the nuclear family—a child-rearing environment composed of a breadwinning father, a homemaking mother, and their nominally biological children. A family deviating from this model is considered a nontraditional family.
Stanley symmetric functionIn mathematics and especially in algebraic combinatorics, the Stanley symmetric functions are a family of symmetric functions introduced by in his study of the symmetric group of permutations. Formally, the Stanley symmetric function Fw(x1, x2, ...) indexed by a permutation w is defined as a sum of certain fundamental quasisymmetric functions. Each summand corresponds to a reduced decomposition of w, that is, to a way of writing w as a product of a minimal possible number of adjacent transpositions.
Vandermonde matrixIn linear algebra, a Vandermonde matrix, named after Alexandre-Théophile Vandermonde, is a matrix with the terms of a geometric progression in each row: an matrix with entries , the jth power of the number , for all zero-based indices and . Most authors define the Vandermonde matrix as the transpose of the above matrix. The determinant of a square Vandermonde matrix (when ) is called a Vandermonde determinant or Vandermonde polynomial. Its value is: This is non-zero if and only if all are distinct (no two are equal), making the Vandermonde matrix invertible.
Alphabetical orderAlphabetical order is a system whereby character strings are placed in order based on the position of the characters in the conventional ordering of an alphabet. It is one of the methods of collation. In mathematics, a lexicographical order is the generalization of the alphabetical order to other data types, such as sequences of numbers or other ordered mathematical objects. When applied to strings or sequences that may contain digits, numbers or more elaborate types of elements, in addition to alphabetical characters, the alphabetical order is generally called a lexicographical order.
Complete homogeneous symmetric polynomialIn mathematics, specifically in algebraic combinatorics and commutative algebra, the complete homogeneous symmetric polynomials are a specific kind of symmetric polynomials. Every symmetric polynomial can be expressed as a polynomial expression in complete homogeneous symmetric polynomials. The complete homogeneous symmetric polynomial of degree k in n variables X1, ..., Xn, written hk for k = 0, 1, 2, ..., is the sum of all monomials of total degree k in the variables.
VariogramIn spatial statistics the theoretical variogram, denoted , is a function describing the degree of spatial dependence of a spatial random field or stochastic process . The semivariogram is half the variogram. In the case of a concrete example from the field of gold mining, a variogram will give a measure of how much two samples taken from the mining area will vary in gold percentage depending on the distance between those samples. Samples taken far apart will vary more than samples taken close to each other.
Walsh functionIn mathematics, more specifically in harmonic analysis, Walsh functions form a complete orthogonal set of functions that can be used to represent any discrete function—just like trigonometric functions can be used to represent any continuous function in Fourier analysis. They can thus be viewed as a discrete, digital counterpart of the continuous, analog system of trigonometric functions on the unit interval. But unlike the sine and cosine functions, which are continuous, Walsh functions are piecewise constant.