Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In this thesis we explore uncertainty quantification of forward and inverse problems involving differential equations. Differential equations are widely employed for modeling natural and social phenomena, with applications in engineering, chemistry, meteor ...
We consider the problem of nonparametric estimation of the drift and diffusion coefficients of a Stochastic Differential Equation (SDE), based on n independent replicates {Xi(t) : t is an element of [0 , 1]}13 d B(t), where alpha is an element of {0 , 1} a ...
Mathematical models involving multiple scales are essential for the description of physical systems. In particular, these models are important for the simulation of time-dependent phenomena, such as the heat flow, where the Laplacian contains mixed and ind ...
The concept of causality is naturally related to processes developing over time. Central ideas of causal inference like time-dependent confounding (feedback) and mediation should be viewed as dynamic concepts. We shall study these concepts in the context o ...
Describing bedload transport as a stochastic process is an idea that emerged in the 1930s with the pioneering work of Einstein. For a long time, the stochastic approach attracted marginal attention, but the situation has radically changed over the last dec ...
In this paper, we study the Besov regularity of Levy white noises on the d-dimensional torus. Due to their rough sample paths, the white noises that we consider are defined as generalized stochastic fields. We, initially, obtain regularity results for gene ...
We study various aspects of stochastic partial differential equations driven by Lévy white noise. This driving noise, which is a generalization of Gaussian white noise, can be viewed either as a generalized random process or as an independently scattered r ...
Although our work lies in the field of random processes, this thesis was originally motivated by signal processing applications, mainly the stochastic modeling of sparse signals. We develop a mathematical study of the innovation model, under which a signal ...
The numerical solution of partial differential equations (PDEs) depending on para- metrized or random input data is computationally intensive. Reduced order modeling techniques, such as the reduced basis methods, have been developed to alleviate this compu ...
We propose and analyze a novel Multi Index Monte Carlo (MIMC) method for weak approximation of stochastic models that are described in terms of differential equations either driven by random measures or with random coefficients. The MIMC method is both a s ...