Unsupervised Texture Segmentation Using Monogenic Curvelets and the Potts Model
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In this work a new method for automatic image classification is proposed. It relies on a compact representation of images using sets of sparse binary features. This work first evaluates the Fast Retina Keypoint binary descriptor and proposes imp ...
The continuous increase, witnessed in the last decade, of both the amount of available data and the areas of application of machine learning, has lead to a demand for both learning and planning algorithms that are capable of handling large-scale problems. ...
In this paper we apply boosting to learn complex non-linear local visual feature representations, drawing inspiration from its successful application to visual object detection. The main goal of local feature descriptors is to distinctively repre- sent a s ...
The ability to automatically find objects of interest in images is useful in the areas of compression, indexing and retrieval, re-targeting, and so on. There are two classes of such algorithms – those that find any object of interest with no prior knowledg ...
The level of dexterity of myoelectric hand prostheses depends to large extent on the feature representation and subsequent classification of surface electromyography signals. This work presents a comparison of various feature extraction and classification ...
Object classification and detection aim at recognizing and localizing objects in real-world images. They are fundamental computer vision problems and a prerequisite for full scene understanding. Their difficulty lies in the large number of possible object ...
Programme doctoral en Informatique, Communications et Information2013
In this paper we propose a novel dimensionality reduction method that is based on successive Laplacian SVM projections in orthogonal deflated subspaces. The proposed method, called Laplacian Support Vector Analysis, produces projection vectors, which captu ...
We propose a novel method to automatically extract the audio-visual objects that are present in a scene. First, the synchrony between related events in audio and video channels is exploited to identify the possible locations of the sound sources. Video reg ...
Institute of Electrical and Electronics Engineers2012
We propose a fast splitting approach to the classical variational formulation of the image partitioning problem, which is frequently referred to as the Potts or piecewise constant Mumford-Shah model. For vector-valued images, our approach is significantly ...
In this letter, an unsupervised kernel-based approach to change detection is introduced. Nonlinear clustering is utilized to partition in two a selected subset of pixels representing both changed and unchanged areas. Once the optimal clustering is obtained ...