Convex Generalizations of Total Variation Based on the Structure Tensor with Applications to Inverse Problems
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We introduce and analyze an algorithm for the minimization of convex functions that are the sum of differentiable terms and proximable terms composed with linear operators. The method builds upon the recently developed smoothed gap technique. In addition t ...
We present new results concerning the approximation of the total variation, integral(Omega)vertical bar del u vertical bar, of a function u by non-local, non-convex functionals of the form Lambda delta(u) = integral(Omega)integral(Omega)delta phi(vertical ...
Elsevier2017
, ,
Splines come in a variety of flavors that can be characterized in terms of some differential operator L. The simplest piecewise-constant model corresponds to the derivative operator. Likewise, one can extend the traditional notion of total variation by con ...
2017
We propose new regularization models to solve inverse problems encountered in biomedical imaging applications. In formulating mathematical schemes, we base our approach on the sparse signal processing principles that have emerged as a central paradigm in t ...
EPFL2016
Mumford-Shah and Potts functionals are powerful variational models for regularization which are widely used in signal and image processing; typical applications are edge-preserving denoising and segmentation. Being both non-smooth and non-convex, they are ...
Springer2016
The Mumford-Shah model is a very powerful variational approach for edge preserving regularization of image reconstruction processes. However, it is algorithmically challenging because one has to deal with a non-smooth and non-convex functional. In this pap ...
Iop Publishing Ltd2015
,
Reconstruction of images from noisy linear measurements is a core problem in image processing, for which convex optimization methods based on total variation (TV) minimization have been the long-standing state-of-the-art. We present an alternative probabil ...
We introduce a novel generic energy functional that we employ to solve inverse imaging problems within a variational framework. The proposed regularization family, termed as structure tensor total variation (STV), penalizes the eigenvalues of the structure ...
Millions of digital images are captured by imaging devices on a daily basis. The way imaging devices operate follows an integral process from which the information of the original scene needs to be estimated. The estimation is done by inverting the integra ...
Non-local means image denoising method is optimized to boost the performance of Brillouin distributed fiber sensors. Results demonstrate ultra-long sensing over a 200-km fiber-loop with 2m resolution using a sensing scheme without any hardware sophisticati ...