Signal processingSignal processing is an electrical engineering subfield that focuses on analyzing, modifying and synthesizing signals, such as sound, , potential fields, seismic signals, altimetry processing, and scientific measurements. Signal processing techniques are used to optimize transmissions, digital storage efficiency, correcting distorted signals, subjective video quality and to also detect or pinpoint components of interest in a measured signal. According to Alan V. Oppenheim and Ronald W.
Analog signalAn analog signal is any continuous-time signal representing some other quantity, i.e., analogous to another quantity. For example, in an analog audio signal, the instantaneous signal voltage varies continuously with the pressure of the sound waves. In contrast, a digital signal represents the original time-varying quantity as a sampled sequence of quantized values. Digital sampling imposes some bandwidth and dynamic range constraints on the representation and adds quantization error.
SignalIn signal processing, a signal is a function that conveys information about a phenomenon. Any quantity that can vary over space or time can be used as a signal to share messages between observers. The IEEE Transactions on Signal Processing includes audio, video, speech, , sonar, and radar as examples of signals. A signal may also be defined as observable change in a quantity over space or time (a time series), even if it does not carry information.
Analog signal processingAnalog signal processing is a type of signal processing conducted on continuous analog signals by some analog means (as opposed to the discrete digital signal processing where the signal processing is carried out by a digital process). "Analog" indicates something that is mathematically represented as a set of continuous values. This differs from "digital" which uses a series of discrete quantities to represent signal. Analog values are typically represented as a voltage, electric current, or electric charge around components in the electronic devices.
Physical layerIn the seven-layer OSI model of computer networking, the physical layer or layer 1 is the first and lowest layer: the layer most closely associated with the physical connection between devices. The physical layer provides an electrical, mechanical, and procedural interface to the transmission medium. The shapes and properties of the electrical connectors, the frequencies to broadcast on, the line code to use and similar low-level parameters, are specified by the physical layer.
Digital signalA digital signal is a signal that represents data as a sequence of discrete values; at any given time it can only take on, at most, one of a finite number of values. This contrasts with an analog signal, which represents continuous values; at any given time it represents a real number within a continuous range of values. Simple digital signals represent information in discrete bands of analog levels. All levels within a band of values represent the same information state.
System busA system bus is a single computer bus that connects the major components of a computer system, combining the functions of a data bus to carry information, an address bus to determine where it should be sent or read from, and a control bus to determine its operation. The technique was developed to reduce costs and improve modularity, and although popular in the 1970s and 1980s, more modern computers use a variety of separate buses adapted to more specific needs.
Bus (computing)In computer architecture, a bus (shortened form of the Latin omnibus, and historically also called data highway or databus) is a communication system that transfers data between components inside a computer, or between computers. This expression covers all related hardware components (wire, optical fiber, etc.) and software, including communication protocols. Early computer buses were parallel electrical wires with multiple hardware connections, but the term is now used for any physical arrangement that provides the same logical function as a parallel electrical busbar.
Control busIn computer architecture, a control bus is part of the system bus and is used by CPUs for communicating with other devices within the computer. While the address bus carries the information about the device with which the CPU is communicating and the data bus carries the actual data being processed, the control bus carries commands from the CPU and returns status signals from the devices. For example, if the data is being read or written to the device the appropriate line (read or write) will be active (logic one).
Instrumentation amplifierAn instrumentation amplifier (sometimes shorthanded as in-amp or InAmp) is a type of differential amplifier that has been outfitted with input buffer amplifiers, which eliminate the need for input impedance matching and thus make the amplifier particularly suitable for use in measurement and test equipment. Additional characteristics include very low DC offset, low drift, low noise, very high open-loop gain, very high common-mode rejection ratio, and very high input impedances.