Measurement-based control of a mechanical oscillator at its thermal decoherence rate
Related publications (32)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We explore applications of quantum computing for radio interferometry and astronomy using recent developments in quantum image processing. We evaluate the suitability of different quantum image representations using a toy quantum computing image reconstruc ...
We introduce a model-independent method for the efficient simulation of low-entropy systems, whose dynamics can be accurately described with a limited number of states. Our method leverages the time-dependent variational principle to efficiently integrate ...
Chaos sets a fundamental limit to quantum-information processing schemes. We study the onset of chaos in spatially extended quantum many-body systems that are relevant to quantum optical devices. We consider an extended version of the Tavis-Cummings model ...
Static and mobile sensor nodes can be employed in gas monitoring tasks to detect gas leaks in an early stage and localize gas sources. Due to the intermittent nature of gas plumes and the slow dynamics of commonly used gas sensors, measuring gas concentrat ...
Much attention has been paid to dynamical simulation and quantum machine learning (QML) independently as applications for quantum advantage, while the possibility of using QML to enhance dynamical simulations has not been thoroughly investigated. Here we d ...
Parametric oscillators are examples of externally driven systems that can exhibit two stable states with opposite phase depending on the initial conditions. In this work, we propose to study what happens when the external forcing is perturbed by a continuo ...
This thesis presents the development, construction, and benchmark of an experimental platform that combines cold fermionic 6Li atoms with locally controllable light-matter interactions. To enable local control, a new device, the cavity-microscope, was crea ...
Recent advancements in fabrication techniques have enabled unprecedented clean interfaces and gate tunability in semiconductor-superconductor heterostructures. Inspired by these developments, we propose protocols to realize Thouless quantum pumping in elec ...
Hybrid methylammonium (MA) lead halide perovskites have emerged as materials exhibiting excellent photovoltaic performance related to their rich structural and dynamic properties. Here, we use multifrequency (X-, Q-, and W-band) electron paramagnetic reson ...
Billions of people now have conversations daily over the Internet. A large portion of this communication takes place via secure messaging protocols that offer "end-to-end encryption'" guarantees and resilience to compromise like the widely-used Double Ratc ...