Publication

Theoretical Study of Light Trapping in Nanostructured Thin Film Solar Cells Using Wavelength-Scale Silver Particles

Ali Dabirian
2015
Journal paper
Abstract

We propose and theoretically evaluate a plasmonic light trapping solution for thin film photovoltaic devices that comprises a monolayer or a submonolayer of wavelength-scale silver particles. We systematically study the effect of silver particle size using full-wave electromagnetic simulations. We find that light trapping is significantly enhanced when wavelength-scale silver particles rather than the ones with subwavelength dimensions are used. We demonstrate that a densely packed monolayer of spherical 700 nm silver particles enhances integrated optical absorption under standard air mass 1.5 global (AM1.5G) in a 7 mu m-thick N719-sensitized solar cell by 40% whereas enhancement is smaller than 2% when 100 nm ones are used. Superior performance of wavelength-scale silver particles is attributed to high-order whispering gallery modes that they support. These modes scatter the light over a wider angular range, hence increasing the density of both waveguide and resonance modes within the dye-sensitized layer.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.