Selected highlights of ECH/ECCD physics studies in the TCV tokamak
Related publications (56)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The need of durable and abundant energy sources for future ages stimulates the studies of thermonuclear energy sources, based on hot plasma confinement by magnetic fields. The most developed concept of hot plasma trap is the tokamak, where the plasma confi ...
Transport phenomena in tokamak plasmas strongly limit the particle and energy confinement and represent a crucial obstacle to controlled thermonuclear fusion. Within the vast framework of transport studies, three topics have been tackled in the present the ...
Deposition of electron cyclotron waves at high-power densities for heating and current drive in a tokamak plasma generates a population of fast electrons and therefore the velocity distribution of the electron population will deviate from a Maxwellian. Apa ...
This paper reports on full tokamak discharge simulations in the TCV tokamak using the DINA code, of which a new open modular architecture version is presented. These new simulations include the effect of intense electron cyclotron heating, dissipated off-a ...
In addition to the second harmonic X-mode (X2) electron cyclotron heating (ECH), the TCV ECH system has been completed with three 450 kW gyrotrons operating at the frequency of 118 GHz for third harmonic X-mode (X3) in a top-launch configuration. In the re ...
The transport of particles in magnetically confined plasmas is of great importance for the development of fusion energy. It will determine techniques for fuelling, for controlling impurity concentrations and for the removal of the alpha particles produced ...
Localized electron heating and current drive, like those produced by electron cyclotron heating (ECH) systems, are powerful tools for controlling the sawtooth period. They allow the direct modification of the plasma parameters which determine the sawtooth ...
The Tokamak `a Configuration Variable , TCV, addresses scientific questions to improve our understanding of magnetically confined plasmas and our ability to control them in ITER relevant scenarios, and explores avenues to improve the plasma performance on ...
Here we present the first measurements by collective Thomson scattering of the evolution of fast-ion populations in a magnetically confined fusion plasma. 150 kW and 110 Ghz radiation from a gyrotron were scattered in the TEXTOR tokamak plasma with energet ...
ELM time series from TCV Ohmic H-mode plasmas are analysed in order to extract information on the ELM process. Firstly, signatures of a chaotic behaviour called unstable periodic orbits become visible when particular plasma conditions are reached. Secondly ...