Langlands programIn representation theory and algebraic number theory, the Langlands program is a web of far-reaching and influential conjectures about connections between number theory and geometry. Proposed by , it seeks to relate Galois groups in algebraic number theory to automorphic forms and representation theory of algebraic groups over local fields and adeles. Widely seen as the single biggest project in modern mathematical research, the Langlands program has been described by Edward Frenkel as "a kind of grand unified theory of mathematics.
Weil conjecturesIn mathematics, the Weil conjectures were highly influential proposals by . They led to a successful multi-decade program to prove them, in which many leading researchers developed the framework of modern algebraic geometry and number theory. The conjectures concern the generating functions (known as local zeta functions) derived from counting points on algebraic varieties over finite fields. A variety V over a finite field with q elements has a finite number of rational points (with coordinates in the original field), as well as points with coordinates in any finite extension of the original field.
0.999...In mathematics, 0.999... (also written as 0. or 0.) denotes the repeating decimal consisting of an unending sequence of 9s after the decimal point. This repeating decimal represents the smallest number no less than every decimal number in the sequence (0.9, 0.99, 0.999, ...); that is, the supremum of this sequence. This number is equal to1. In other words, "0.999..." is not "almost exactly" or "very, very nearly but not quite" 1 - rather, "0.999..." and "1" represent the same number.
Divisor functionIn mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer. When referred to as the divisor function, it counts the number of divisors of an integer (including 1 and the number itself). It appears in a number of remarkable identities, including relationships on the Riemann zeta function and the Eisenstein series of modular forms. Divisor functions were studied by Ramanujan, who gave a number of important congruences and identities; these are treated separately in the article Ramanujan's sum.
Monstrous moonshineIn mathematics, monstrous moonshine, or moonshine theory, is the unexpected connection between the monster group M and modular functions, in particular, the j function. The initial numerical observation was made by John McKay in 1978, and the phrase was coined by John Conway and Simon P. Norton in 1979. The monstrous moonshine is now known to be underlain by a vertex operator algebra called the moonshine module (or monster vertex algebra) constructed by Igor Frenkel, James Lepowsky, and Arne Meurman in 1988, which has the monster group as its group of symmetries.
55 (five) is a number, numeral and digit. It is the natural number, and cardinal number, following 4 and preceding 6, and is a prime number. It has garnered attention throughout history in part because distal extremities in humans typically contain five digits. The evolution of the modern Western digit for the numeral 5 cannot be traced back to the Indian system, as for the digits 1 to 4. The Kushana and Gupta empires in what is now India had among themselves several forms that bear no resemblance to the modern digit.