Relativistic angular momentumIn physics, relativistic angular momentum refers to the mathematical formalisms and physical concepts that define angular momentum in special relativity (SR) and general relativity (GR). The relativistic quantity is subtly different from the three-dimensional quantity in classical mechanics. Angular momentum is an important dynamical quantity derived from position and momentum. It is a measure of an object's rotational motion and resistance to changes in its rotation.
Spacetime diagramA spacetime diagram is a graphical illustration of objects' locations in space at various times, especially in the special theory of relativity. Spacetime diagrams can show the geometry underlying phenomena like time dilation and length contraction without mathematical equations. The history of an object's location through time traces out a line or curve on a spacetime diagram, referred to as the object's world line. Each point in a spacetime diagram represents a unique position in space and time and is referred to as an event.
Wightman axiomsIn mathematical physics, the Wightman axioms (also called Gårding–Wightman axioms), named after Arthur Wightman, are an attempt at a mathematically rigorous formulation of quantum field theory. Arthur Wightman formulated the axioms in the early 1950s, but they were first published only in 1964 after Haag–Ruelle scattering theory affirmed their significance. The axioms exist in the context of constructive quantum field theory and are meant to provide a basis for rigorous treatment of quantum fields and strict foundation for the perturbative methods used.
Normal invariantIn mathematics, a normal map is a concept in geometric topology due to William Browder which is of fundamental importance in surgery theory. Given a Poincaré complex X (more geometrically a Poincaré space), a normal map on X endows the space, roughly speaking, with some of the homotopy-theoretic global structure of a closed manifold. In particular, X has a good candidate for a stable normal bundle and a Thom collapse map, which is equivalent to there being a map from a manifold M to X matching the fundamental classes and preserving normal bundle information.