Antibacterial robust, uniform TiO2-ZrO2 films on polyester (PES) under low intensity sunlight irradiation made up by equal amounts of TiO2 and ZrO2 exhibited a much higher bacterial inactivation kinetics compared to pure TiO2 or ZrO2. The TiO2-ZrO2 matrix was found to introduce a drastic increase in the Cu-dopant promoter enhancing bacterial inactivation compared to Cu sputtered in the same amount on PES. Furthermore, the bacterial inactivation was accelerated by a factor close to three, by Cu- on TiO2-ZrO2 at extremely low levels similar to 0.01%. Evidence is presented by X-ray photoelectron spectroscopy for redox catalysis taking place during bacterial inactivation. The TiO2-ZrO2-Cu band gap is estimated and the film properties were fully characterized. Evidence is provided for the photogenerated radicals intervening in the bacterial inactivation. The photoinduced TiO2-ZrO2-Cu interfacial charge transfer is discussed in term of the electronic band positions of the binary oxide and the Cu TiO2 intragap state
Andreas Schueler, Anna Krammer, Maxime Lagier
Andras Kis, Dumitru Dumcenco, Olivier Renault, Dmitrii Unuchek, Hokwon Kim, Nicolas Chevalier