Polarizable Density Embedding: A New QM/QM/MM-Based Computational Strategy
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We present an implementation of analytical quantum mechanical molecular gradients within the polarizable embedding (PE) model to allow for efficient geometry optimizations and vibrational analysis of molecules embedded in large, geometrically frozen enviro ...
The treatment of dispersion interactions is ubiquitous but computationally demanding for seamless ab initio approaches. A highly popular and simple remedy consists in correcting for the missing interactions a posteriori by adding an attractive energy term ...
Kohn-Sham density functional theory offers a powerful and robust formalism for investigating the electronic structure of many-body systems while providing a practical balance of accuracy and computational cost unmatched by other methods. Despite this succe ...
Characterizing and predicting the nuclear dynamics of electronically excited molecules is of paramount importance to the understanding of photochemical and photophysical processes in molecules and to the development of new technologies in domains like sola ...
Accurate modeling of non-covalent interactions involving sulfur today is ubiquitous, particularly with regards to the role played by sulfur-containing heterocycles in the field of organic electronics. The density functional tight binding (DFTB) method offe ...
Radicals play an important role in many areas of chemistry, such as atmospheric, aquatic, polymer, and biological, to name a few. Radicals are often highly reactive species which are short-lived and therefore harder to study by experimental techniques. In ...
The current state of the art of Quantum Mechanical/molecular mechanical (QM/MM) molecular dynamics approaches in ground and electronically excited states and their applications to biological problems is reviewed. For a complete description of quantum pheno ...
The parameterisation of accurate and transferable repulsive potentials is a key ingredient for the self-consistent-charge density functional tight-binding method (SCC-DFTB). In the conventional parameterisation scheme the balanced description of different ...
Analysis of infrared spectra of palladium nanoparticles (NPs) immersed in the tri-tert-butyl-R-phosphonium-based ionic liquids (ILs) demonstrates that both cations and anions of the ILs interact with the NPs. According to quantum-chemical simulations of th ...
Modeling proton-induced damage in biological systems, in particular in DNA building blocks, is of major concern in studies on cancer proton therapy. This is indeed an extremely complex process and analysis of the mechanism at the molecular level is of cruc ...