Object-modeling languageAn object-modeling language is a standardized set of symbols used to model a software system using an object-oriented framework. The symbols can be either informal or formal ranging from predefined graphical templates to formal object models defined by grammars and specifications. A modeling language is usually associated with a methodology for object-oriented development. The modeling language defines the elements of the model. E.g., that a model has classes, methods, object properties, etc.
Systems modeling languageThe systems modeling language (SysML) is a general-purpose modeling language for systems engineering applications. It supports the specification, analysis, design, verification and validation of a broad range of systems and systems-of-systems. SysML was originally developed by an open source specification project, and includes an open source license for distribution and use. SysML is defined as an extension of a subset of the Unified Modeling Language (UML) using . The language's extensions were designed to support systems engineering activities.
Software verification and validationIn software project management, software testing, and software engineering, verification and validation (V&V) is the process of checking that a software system meets specifications and requirements so that it fulfills its intended purpose. It may also be referred to as software quality control. It is normally the responsibility of software testers as part of the software development lifecycle.
Control engineeringControl engineering or control systems engineering is an engineering discipline that deals with control systems, applying control theory to design equipment and systems with desired behaviors in control environments. The discipline of controls overlaps and is usually taught along with electrical engineering and mechanical engineering at many institutions around the world. The practice uses sensors and detectors to measure the output performance of the process being controlled; these measurements are used to provide corrective feedback helping to achieve the desired performance.
Domain-specific modelingDomain-specific modeling (DSM) is a software engineering methodology for designing and developing systems, such as computer software. It involves systematic use of a domain-specific language to represent the various facets of a system. Domain-specific modeling languages tend to support higher-level abstractions than general-purpose modeling languages, so they require less effort and fewer low-level details to specify a given system.
General-purpose modelingGeneral-purpose modeling (GPM) is the systematic use of a general-purpose modeling language to represent the various facets of an object or a system. Examples of GPM languages are: The Unified Modeling Language (UML), an industry standard for modeling software-intensive systems EXPRESS, a data modeling language for product data, standardized as ISO 10303-11 IDEF, a group of languages from the 1970s that aimed to be neutral, generic and reusable Gellish, an industry standard natural language oriented modeling language for storage and exchange of data and knowledge, published in 2005 XML, a data modeling language now beginning to be used to model code (MetaL, Microsoft .
Ladder logicLadder logic was originally a written method to document the design and construction of relay racks as used in manufacturing and process control. Each device in the relay rack would be represented by a symbol on the ladder diagram with connections between those devices shown. In addition, other items external to the relay rack such as pumps, heaters, and so forth would also be shown on the ladder diagram. Ladder logic has evolved into a programming language that represents a program by a graphical diagram based on the circuit diagrams of relay logic hardware.
Temporal logicIn logic, temporal logic is any system of rules and symbolism for representing, and reasoning about, propositions qualified in terms of time (for example, "I am always hungry", "I will eventually be hungry", or "I will be hungry until I eat something"). It is sometimes also used to refer to tense logic, a modal logic-based system of temporal logic introduced by Arthur Prior in the late 1950s, with important contributions by Hans Kamp. It has been further developed by computer scientists, notably Amir Pnueli, and logicians.
Object–role modelingObject–role modeling (ORM) is used to model the semantics of a universe of discourse. ORM is often used for data modeling and software engineering. An object–role model uses graphical symbols that are based on first order predicate logic and set theory to enable the modeler to create an unambiguous definition of an arbitrary universe of discourse. Attribute free, the predicates of an ORM Model lend themselves to the analysis and design of graph database models in as much as ORM was originally conceived to benefit relational database design.
Automated theorem provingAutomated theorem proving (also known as ATP or automated deduction) is a subfield of automated reasoning and mathematical logic dealing with proving mathematical theorems by computer programs. Automated reasoning over mathematical proof was a major impetus for the development of computer science. While the roots of formalised logic go back to Aristotle, the end of the 19th and early 20th centuries saw the development of modern logic and formalised mathematics.