Multi-index stochastic collocation convergence rates for random PDEs with parametric regularity
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In this thesis, we study two distinct problems.
The first problem consists of studying the linear system of partial differential equations which consists of taking a k-form, and applying the exterior derivative 'd' to it and add the wedge product with a 1- ...
Several useful variance-reduced stochastic gradient algorithms, such as SVRG, SAGA, Finito, and SAG, have been proposed to minimize empirical risks with linear convergence properties to the exact minimizers. The existing convergence results assume uniform ...
Part I of this work developed the exact diffusion algorithm to remove the bias that is characteristic of distributed solutions for deterministic optimization problems. The algorithm was shown to be applicable to a larger set of combination policies than ea ...
We consider an optimal control problem for an elliptic partial differential equation (PDE) with random coefficients. The control function is a deterministic, distributed forcing term that minimizes an expected quadratic regularized loss functional. We cons ...
2018
Accelerating the convergence of some hypergeometric series with Gosper's method leads, in a most elementary way, to some series discovered by Ramanujan, Bauer and Dougall. In particular, it is shown that one of them can be traced back to the well-known for ...
2018
,
The analysis in Part I [1] revealed interesting properties for subgradient learning algorithms in the context of stochastic optimization. These algorithms are used when the risk functions are non-smooth or involve non-differentiable components. They have b ...
Elsevier2018
,
The present work concerns the approximation of the solution map S associated to the parametric Helmholtz boundary value problem, i.e., the map which associates to each (real) wavenumber belonging to a given interval of interest the corresponding solution ...
Linear matrix equations, such as the Sylvester and Lyapunov equations, play an important role in various applications, including the stability analysis and dimensionality reduction of linear dynamical control systems and the solution of partial differentia ...
This work presents an algorithmic scheme for solving the infinite-time constrained linear quadratic regulation problem. We employ an accelerated version of a popular proximal gradient scheme, commonly known as the Forward-Backward Splitting (FBS), and prov ...
Institute of Electrical and Electronics Engineers2017
Generalized linear models, where a random vector x is observed through a noisy, possibly nonlinear, function of a linear transform z = A x, arise in a range of applications in nonlinear filtering and regression. Approximate message passing (AMP) methods, b ...