An Algorithmic Framework for Mumford-Shah Regularization of Inverse Problems in Imaging
Related publications (67)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
This document describes the implementation of a neuron pruning method with pyTorch, and analyzes the results obtained by applying this method on convolutional and residual networks. The performance of the algorithm is measured in different test cases and w ...
In this study, we developed a robust inversion algorithm to estimate the Neurite Orientation Dispersion and Density Imaging (NODDI) model. It is based on the Accelerated Microstructure Imaging via Convex Optimization (AMICO) framework. However, in contrast ...
We propose new regularization models to solve inverse problems encountered in biomedical imaging applications. In formulating mathematical schemes, we base our approach on the sparse signal processing principles that have emerged as a central paradigm in t ...
Optical tomography has been widely investigated for biomedical imaging applications. In recent years, it has been combined with digital holography and has been employed to produce high quality images of phase objects such as cells. In this Thesis, we look ...
We present new results concerning the approximation of the total variation, ∫Ω∣∇u∣, of a function u by non-local, non-convex functionals of the form $$ \Lambda_\delta u = \int_{\Omega} \int_{\Omega} \frac{\delta \varphi \big( |u(x) - ...
Ultrasound (US) imaging is currently living a revolution. On the one hand, ultrafast US imaging, a novel way of acquiring and producing US images, has paved the way to several advanced imaging modes, e.g. shear-wave elastography, ultrafast Doppler imaging ...
Mumford-Shah and Potts functionals are powerful variational models for regularization which are widely used in signal and image processing; typical applications are edge-preserving denoising and segmentation. Being both non-smooth and non-convex, they are ...
In optical diffraction tomography, the multiply scattered field is a nonlinear function of the refractive index (RI) of the object. The Rytov method relies on a single-scattering propagation model and is commonly used to reconstruct images. Recently, a rec ...
Generalized linear models, where a random vector x is observed through a noisy, possibly nonlinear, function of a linear transform z = A x, arise in a range of applications in nonlinear filtering and regression. Approximate message passing (AMP) methods, b ...
Optical diffraction tomography relies on solving an inverse scattering problem governed by the wave equation. Classical reconstruction algorithms are based on linear approximations of the forward model (Born or Rytov), which limits their applicability to t ...