Data processingData processing is the collection and manipulation of digital data to produce meaningful information. Data processing is a form of information processing, which is the modification (processing) of information in any manner detectable by an observer. The term "Data Processing", or "DP" has also been used to refer to a department within an organization responsible for the operation of data processing programs. Data processing may involve various processes, including: Validation – Ensuring that supplied data is correct and relevant.
Database engineA database engine (or storage engine) is the underlying software component that a database management system (DBMS) uses to create, read, update and delete (CRUD) data from a database. Most database management systems include their own application programming interface (API) that allows the user to interact with their underlying engine without going through the user interface of the DBMS. The term "database engine" is frequently used interchangeably with "database server" or "database management system".
Temporal databaseA temporal database stores data relating to time instances. It offers temporal data types and stores information relating to past, present and future time. Temporal databases can be uni-temporal, bi-temporal or tri-temporal. More specifically the temporal aspects usually include valid time, transaction time or decision time. Valid time is the time period during or event time at which a fact is true in the real world. Transaction time is the time at which a fact was recorded in the database.
Database normalizationDatabase normalization or database normalisation (see spelling differences) is the process of structuring a relational database in accordance with a series of so-called normal forms in order to reduce data redundancy and improve data integrity. It was first proposed by British computer scientist Edgar F. Codd as part of his relational model. Normalization entails organizing the columns (attributes) and tables (relations) of a database to ensure that their dependencies are properly enforced by database integrity constraints.
Query planA query plan (or query execution plan) is a sequence of steps used to access data in a SQL relational database management system. This is a specific case of the relational model concept of access plans. Since SQL is declarative, there are typically many alternative ways to execute a given query, with widely varying performance. When a query is submitted to the database, the query optimizer evaluates some of the different, correct possible plans for executing the query and returns what it considers the best option.
Database administratorDatabase administrators (DBAs) use specialized software to store and organize data. The role may include capacity planning, installation, configuration, database design, migration, performance monitoring, security, troubleshooting, as well as backup and data recovery. Some common and useful skills for database administrators are: Knowledge of database queries Knowledge of database theory Knowledge of database design Knowledge about the RDBMS itself, e.g. Microsoft SQL Server or MySQL Knowledge of SQL, e.g.
Data cleansingData cleansing or data cleaning is the process of detecting and correcting (or removing) corrupt or inaccurate records from a record set, table, or database and refers to identifying incomplete, incorrect, inaccurate or irrelevant parts of the data and then replacing, modifying, or deleting the dirty or coarse data. Data cleansing may be performed interactively with data wrangling tools, or as batch processing through scripting or a data quality firewall. After cleansing, a data set should be consistent with other similar data sets in the system.
Data miningData mining is the process of extracting and discovering patterns in large data sets involving methods at the intersection of machine learning, statistics, and database systems. Data mining is an interdisciplinary subfield of computer science and statistics with an overall goal of extracting information (with intelligent methods) from a data set and transforming the information into a comprehensible structure for further use. Data mining is the analysis step of the "knowledge discovery in databases" process, or KDD.
Language Integrated QueryLanguage Integrated Query (LINQ, pronounced "link") is a Microsoft .NET Framework component that adds native data querying capabilities to .NET languages, originally released as a major part of .NET Framework 3.5 in 2007. LINQ extends the language by the addition of query expressions, which are akin to SQL statements, and can be used to conveniently extract and process data from arrays, enumerable classes, XML documents, relational databases, and third-party data sources.
Semantic data modelA semantic data model (SDM) is a high-level semantics-based database description and structuring formalism (database model) for databases. This database model is designed to capture more of the meaning of an application environment than is possible with contemporary database models. An SDM specification describes a database in terms of the kinds of entities that exist in the application environment, the classifications and groupings of those entities, and the structural interconnections among them.