Mutual informationIn probability theory and information theory, the mutual information (MI) of two random variables is a measure of the mutual dependence between the two variables. More specifically, it quantifies the "amount of information" (in units such as shannons (bits), nats or hartleys) obtained about one random variable by observing the other random variable. The concept of mutual information is intimately linked to that of entropy of a random variable, a fundamental notion in information theory that quantifies the expected "amount of information" held in a random variable.
Information theoryInformation theory is the mathematical study of the quantification, storage, and communication of information. The field was originally established by the works of Harry Nyquist and Ralph Hartley, in the 1920s, and Claude Shannon in the 1940s. The field, in applied mathematics, is at the intersection of probability theory, statistics, computer science, statistical mechanics, information engineering, and electrical engineering. A key measure in information theory is entropy.
Variation of informationIn probability theory and information theory, the variation of information or shared information distance is a measure of the distance between two clusterings (partitions of elements). It is closely related to mutual information; indeed, it is a simple linear expression involving the mutual information. Unlike the mutual information, however, the variation of information is a true metric, in that it obeys the triangle inequality. Suppose we have two partitions and of a set into disjoint subsets, namely and .
Entropy (information theory)In information theory, the entropy of a random variable is the average level of "information", "surprise", or "uncertainty" inherent to the variable's possible outcomes. Given a discrete random variable , which takes values in the alphabet and is distributed according to : where denotes the sum over the variable's possible values. The choice of base for , the logarithm, varies for different applications. Base 2 gives the unit of bits (or "shannons"), while base e gives "natural units" nat, and base 10 gives units of "dits", "bans", or "hartleys".
Information contentIn information theory, the information content, self-information, surprisal, or Shannon information is a basic quantity derived from the probability of a particular event occurring from a random variable. It can be thought of as an alternative way of expressing probability, much like odds or log-odds, but which has particular mathematical advantages in the setting of information theory. The Shannon information can be interpreted as quantifying the level of "surprise" of a particular outcome.
Broadcast engineeringBroadcast engineering is the field of electrical engineering, and now to some extent computer engineering and information technology, which deals with radio and television broadcasting. Audio engineering and RF engineering are also essential parts of broadcast engineering, being their own subsets of electrical engineering. Broadcast engineering involves both the studio and transmitter aspects (the entire airchain), as well as remote broadcasts. Every station has a broadcast engineer, though one may now serve an entire station group in a city.
Broadcast television systemsBroadcast television systems (or terrestrial television systems outside the US and Canada) are the encoding or formatting systems for the transmission and reception of terrestrial television signals. Analog television systems were standardized by the International Telecommunication Union (ITU) in 1961, with each system designated by a letter (A-N) in combination with the color standard used (NTSC, PAL or SECAM) - for example PAL-B, NTSC-M, etc.). These analog systems for TV broadcasting dominated until the 2010s.
Linear codeIn coding theory, a linear code is an error-correcting code for which any linear combination of codewords is also a codeword. Linear codes are traditionally partitioned into block codes and convolutional codes, although turbo codes can be seen as a hybrid of these two types. Linear codes allow for more efficient encoding and decoding algorithms than other codes (cf. syndrome decoding). Linear codes are used in forward error correction and are applied in methods for transmitting symbols (e.g.
BroadcastingBroadcasting is the distribution of audio or video content to a dispersed audience via any electronic mass communications medium, but typically one using the electromagnetic spectrum (radio waves), in a one-to-many model. Broadcasting began with AM radio, which came into popular use around 1920 with the spread of vacuum tube radio transmitters and receivers. Before this, most implementations of electronic communication (early radio, telephone, and telegraph) were one-to-one, with the message intended for a single recipient.
Exponential time hypothesisIn computational complexity theory, the exponential time hypothesis is an unproven computational hardness assumption that was formulated by . It states that satisfiability of 3-CNF Boolean formulas cannot be solved in subexponential time, i.e., for all constant , where n is the number of variables in the formula. The exponential time hypothesis, if true, would imply that P ≠ NP, but it is a stronger statement.