**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Max-stable processes and stationary systems of Levy particles

Abstract

We study stationary max-stable processes {n(t): t is an element of R} admitting a representation of the form n(t) = max(i is an element of N) (U-i +Y-i(t)), where Sigma(infinity)(i=1) delta U-i is a Poisson point process on R with intensity e(-u)du, and Y1,Y2 are i.i.d. copies of a process {Y (t) : t is an element of R} obtained by running a Levy process for positive t and a dual Levy process for negative t. We give a general construction of such Levy-Brown-Resnick processes, where the restrictions of Y to the positive and negative half-axes are Levy processes with random birth and killing times. We show that these max-stable processes appear as limits of suitably normalized pointwise maxima of the form Mn(t) = max(i=1),...,n xi i (s(n) + t), where xi 1, xi 2... are i.i.d. Levy processes and sn is a sequence such that s(n) similar to clog n with c > 0. Also, we consider maxima of the form max(i=1),...,n Z(i) (t/log n), where Zi, Z2,... are i.i.d. Ornstein-Uhlenbeck processes driven by an alpha-stable noise with skewness parameter beta = -1. After a linear normalization, we again obtain limiting max-stable processes of the above form. This gives a generalization of the results of Brown and Resnick (1977) to the totally skewed a-stable case. (C) 2015 Elsevier B.V. All rights reserved.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (4)

Lévy process

In probability theory, a Lévy process, named after the French mathematician Paul Lévy, is a stochastic process with independent, stationary increments: it represents the motion of a point whose successive displacements are random, in which displacements in pairwise disjoint time intervals are independent, and displacements in different time intervals of the same length have identical probability distributions. A Lévy process may thus be viewed as the continuous-time analog of a random walk.

Wiener process

In mathematics, the Wiener process is a real-valued continuous-time stochastic process named in honor of American mathematician Norbert Wiener for his investigations on the mathematical properties of the one-dimensional Brownian motion. It is often also called Brownian motion due to its historical connection with the physical process of the same name originally observed by Scottish botanist Robert Brown.

Process

A process is a series or set of activities that interact to produce a result; it may occur once-only or be recurrent or periodic. Things called a process include: Business process, activities that produce a specific service or product for customers Business process modeling, activity of representing processes of an enterprise in order to deliver improvements Manufacturing process management, a collection of technologies and methods used to define how products are to be manufactured. Process architecture, s