Electron scattering, charge order, and pseudogap physics in La1.6-xNd0.4SrxCuO4: An angle-resolved photoemission spectroscopy study
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
After photon absorption, electrons from a dispersive band of a solid require a finite time in the photoemission process before being photoemitted as free particles, in line with recent attosecond-resolved photoemission experiments. According to the Eisenbu ...
In the photoemission process electrons are emitted from a solid upon excitation with UV light. From the measurement of their energy and momentum, angle-resolved photoemission spectroscopy (ARPES) allows to reconstruct the electronic properties of the solid ...
EPFL2018
, ,
Tuning the electronic properties of graphene by adatom deposition unavoidably introduces disorder into the system, which directly affects the single-particle excitations and electrodynamics. Using angle-resolved photoemission spectroscopy (ARPES) we trace ...
Amer Chemical Soc2015
, , ,
Photoelectrons produced from the excitation of spin-degenerate states in solids can have a sizable spin polarization, which is related to the phase of interfering channels in the photoemission matrix elements. Such spin polarization can be measured by spin ...
Amer Physical Soc2017
Despite relentless efforts, the pseudogap phase of cuprates and its possible relation to high-temperature superconductivity remain enigmatic [1]. Even more complexity has been added by the experimental discovery of charge order[2], recently demonstrated as ...
2014
We present an angle-resolved photoelectron spectroscopy study of the changes in the electronic structure of electron-doped Ba(Fe1-xCox)(2)As-2 across the superconducting phase transition. By changing the polarization of the incoming light, we were able to ...
Interaction effects can change materials properties in intriguing ways, and they have, in general, a huge impact on electronic spectra. In particular, satellites in photoemission spectra are pure many-body effects, and their study is of increasing interest ...
The Eisenbud-Wigner-Smith (EWS) time delay of photoemission depends on the phase term of the matrix element describing the transition. Because of an interference process between partial channels, the photoelectrons acquire a spin polarization which is also ...
Entanglement of the spin-orbit and magnetic order in multiferroic materials bears a strong potential for engineering novel electronic and spintronic devices. Here, we explore the electron and spin structure of ferroelectric alpha-GeTe thin films doped with ...
We study the adsorption and the growth of FePc and MnPc layer(s) on the Au(111) surface. The evolution of the Au(111) Shockley surface state by molecular deposition has been investigated by means of photoemission spectroscopy. The Shockley surface state un ...