Publication

Phage Selection of Bicyclic Peptide Ligands of the Notch1 Receptor

Abstract

Precise regulation of the Notch signaling pathway is crucial, as increases or deficiencies in signaling are associated with diseases, including a wide range of cancers. Recent studies have demonstrated that monoclonal antibodies that bind and stabilize the structure of the negative regulatory region (NRR) in the extracellular domain of the Notch receptor can inhibit Notch signaling. In this work, we posed the question whether bicyclic peptides, being around 100-fold smaller than antibodies, can also stabilize the NRR and inhibit Notch signaling. Bicyclic peptides that bind the NRR of human Notch1 were isolated from combinatorial libraries by phage display. Affinity maturation yielded ligands with dissociation constant (K-d) values as low as 150nM. The bicyclic peptides increased the melting temperature of the NRR by up to 8 degrees C, thus substantially stabilizing the protein structure, but they did not inhibit Notch signaling in cellular assays. Although Notch signaling could not be inhibited, this work demonstrates that phage-selected bicyclic peptides can stabilize proteins; this capacity of bicyclic peptides may be exploited for modulating the conformation of other disease targets.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.