Social mediaSocial media are interactive technologies that facilitate the creation and sharing of information, ideas, interests, and other forms of expression through virtual communities and networks. While challenges to the definition of social media arise due to the variety of stand-alone and built-in social media services currently available, there are some common features: Social media are interactive Web 2.0 Internet-based applications.
Social media marketingSocial media marketing is the use of social media platforms and websites to promote a product or service. Although the terms e-marketing and digital marketing are still dominant in academia, social media marketing is becoming more popular for both practitioners and researchers. Most social media platforms have built-in data analytics tools, enabling companies to track the progress, success, and engagement of ad campaigns.
N-gramn-gram is a series of n adjacent letters (including punctuation marks and blanks), syllables, or rarely whole words found in a language dataset; or adjacent phonemes extracted from a speech-recording dataset, or adjacent base pairs extracted from a genome. They are collected from a text or speech corpus. If Latin numerical prefixes are used, then n-gram of size 1 is called a "unigram", size 2 a "bigram" (or, less commonly, a "digram") etc. If, instead of the Latin ones, the English cardinal numbers are furtherly used, then they are called "four-gram", "five-gram", etc.
Ensemble learningIn statistics and machine learning, ensemble methods use multiple learning algorithms to obtain better predictive performance than could be obtained from any of the constituent learning algorithms alone. Unlike a statistical ensemble in statistical mechanics, which is usually infinite, a machine learning ensemble consists of only a concrete finite set of alternative models, but typically allows for much more flexible structure to exist among those alternatives.
Machine learningMachine learning (ML) is an umbrella term for solving problems for which development of algorithms by human programmers would be cost-prohibitive, and instead the problems are solved by helping machines 'discover' their 'own' algorithms, without needing to be explicitly told what to do by any human-developed algorithms. Recently, generative artificial neural networks have been able to surpass results of many previous approaches.
DocumentA document is a written, drawn, presented, or memorialized representation of thought, often the manifestation of non-fictional, as well as fictional, content. The word originates from the Latin Documentum, which denotes a "teaching" or "lesson": the verb doceō denotes "to teach". In the past, the word was usually used to denote written proof useful as evidence of a truth or fact. In the Computer Age, "document" usually denotes a primarily textual , including its structure and format, e.g. fonts, colors, and .
Document classificationDocument classification or document categorization is a problem in library science, information science and computer science. The task is to assign a document to one or more classes or categories. This may be done "manually" (or "intellectually") or algorithmically. The intellectual classification of documents has mostly been the province of library science, while the algorithmic classification of documents is mainly in information science and computer science.
Gram-positive bacteriaIn bacteriology, gram-positive bacteria are bacteria that give a positive result in the Gram stain test, which is traditionally used to quickly classify bacteria into two broad categories according to their type of cell wall. Gram-positive bacteria take up the crystal violet stain used in the test, and then appear to be purple-coloured when seen through an optical microscope. This is because the thick peptidoglycan layer in the bacterial cell wall retains the stain after it is washed away from the rest of the sample, in the decolorization stage of the test.
Automatic summarizationAutomatic summarization is the process of shortening a set of data computationally, to create a subset (a summary) that represents the most important or relevant information within the original content. Artificial intelligence algorithms are commonly developed and employed to achieve this, specialized for different types of data. Text summarization is usually implemented by natural language processing methods, designed to locate the most informative sentences in a given document.
Multimodal sentiment analysisMultimodal sentiment analysis is a technology for traditional text-based sentiment analysis, which includes modalities such as audio and visual data. It can be bimodal, which includes different combinations of two modalities, or trimodal, which incorporates three modalities. With the extensive amount of social media data available online in different forms such as videos and images, the conventional text-based sentiment analysis has evolved into more complex models of multimodal sentiment analysis, which can be applied in the development of virtual assistants, analysis of YouTube movie reviews, analysis of news videos, and emotion recognition (sometimes known as emotion detection) such as depression monitoring, among others.