Evolutionary dynamicsEvolutionary dynamics is the study of the mathematical principles according to which biological organisms as well as cultural ideas evolve and evolved. This is mostly achieved through the mathematical discipline of population genetics, along with evolutionary game theory. Most population genetics considers changes in the frequencies of alleles at a small number of gene loci. When infinitesimal effects at a large number of gene loci are considered, one derives quantitative genetics.
Disruptive selectionDisruptive selection, also called diversifying selection, describes changes in population genetics in which extreme values for a trait are favored over intermediate values. In this case, the variance of the trait increases and the population is divided into two distinct groups. In this more individuals acquire peripheral character value at both ends of the distribution curve. Natural selection is known to be one of the most important biological processes behind evolution.
Group selectionGroup selection is a proposed mechanism of evolution in which natural selection acts at the level of the group, instead of at the level of the individual or gene. Early authors such as V. C. Wynne-Edwards and Konrad Lorenz argued that the behavior of animals could affect their survival and reproduction as groups, speaking for instance of actions for the good of the species. In the 1930s, R.A. Fisher and J.B.S.
Evolutionary algorithmIn computational intelligence (CI), an evolutionary algorithm (EA) is a subset of evolutionary computation, a generic population-based metaheuristic optimization algorithm. An EA uses mechanisms inspired by biological evolution, such as reproduction, mutation, recombination, and selection. Candidate solutions to the optimization problem play the role of individuals in a population, and the fitness function determines the quality of the solutions (see also loss function).
Evolutionary developmental psychologyEvolutionary developmental psychology (EDP) is a research paradigm that applies the basic principles of evolution by natural selection, to understand the development of human behavior and cognition. It involves the study of both the genetic and environmental mechanisms that underlie the development of social and cognitive competencies, as well as the epigenetic (gene-environment interactions) processes that adapt these competencies to local conditions.
Crossover (genetic algorithm)In genetic algorithms and evolutionary computation, crossover, also called recombination, is a genetic operator used to combine the genetic information of two parents to generate new offspring. It is one way to stochastically generate new solutions from an existing population, and is analogous to the crossover that happens during sexual reproduction in biology. Solutions can also be generated by cloning an existing solution, which is analogous to asexual reproduction. Newly generated solutions may be mutated before being added to the population.
HeritabilityHeritability is a statistic used in the fields of breeding and genetics that estimates the degree of variation in a phenotypic trait in a population that is due to genetic variation between individuals in that population. The concept of heritability can be expressed in the form of the following question: "What is the proportion of the variation in a given trait within a population that is not explained by the environment or random chance?" Other causes of measured variation in a trait are characterized as environmental factors, including observational error.
EpistasisEpistasis is a phenomenon in genetics in which the effect of a gene mutation is dependent on the presence or absence of mutations in one or more other genes, respectively termed modifier genes. In other words, the effect of the mutation is dependent on the genetic background in which it appears. Epistatic mutations therefore have different effects on their own than when they occur together. Originally, the term epistasis specifically meant that the effect of a gene variant is masked by that of a different gene.
Idealised populationIn population genetics an idealised population is one that can be described using a number of simplifying assumptions. Models of idealised populations are either used to make a general point, or they are fit to data on real populations for which the assumptions may not hold true. For example, coalescent theory is used to fit data to models of idealised populations. The most common idealized population in population genetics is described in the Wright-Fisher model after Sewall Wright and Ronald Fisher (1922, 1930) and (1931).
Evolutionarily stable strategyAn evolutionarily stable strategy (ESS) is a strategy (or set of strategies) that is impermeable when adopted by a population in adaptation to a specific environment, that is to say it cannot be displaced by an alternative strategy (or set of strategies) which may be novel or initially rare. Introduced by John Maynard Smith and George R. Price in 1972/3, it is an important concept in behavioural ecology, evolutionary psychology, mathematical game theory and economics, with applications in other fields such as anthropology, philosophy and political science.