Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Concurrency bugs are at the heart of some of the worst bugs that plague software. Concurrency bugs slow down software development because it can take weeks or even months before developers can identify and fix them. In-production detection, root cause diagnosis, and classification of concurrency bugs is challenging. This is because these activities require heavyweight analyses such as exploring program paths and determining failing program inputs and schedules, all of which are not suited for software running in production. This dissertation develops practical techniques for the detection, root cause diagnosis, and classification of concurrency bugs for inproduction software. Furthermore, we develop ways for developers to better reason about concurrent programs. This dissertation builds upon the following principles: — The approach in this dissertation spans multiple layers of the system stack, because concurrency spans many layers of the system stack. — It performs most of the heavyweight analyses in-house and resorts to minimal in-production analysis in order to move the heavy lifting to where it is least disruptive. — It eschews custom hardware solutions that may be infeasible to implement in the real world. Relying on the aforementioned principles, this dissertation introduces:
Foivos Psarommatis Giannakopoulos
Mathias Josef Payer, Edouard Bugnion, Evangelos Marios Kogias, Adrien Ghosn, Charly Nicolas Lucien Castes, Neelu Shivprakash Kalani, Yuchen Qian