Publication

Experimental Determination of Optical and Thermal Properties of Semi-transparent Photovoltaic Modules Based on Dye-sensitized Solar Cells

Abstract

The demand for energy efficiency of buildings and on-site electricity production is rising. Building integrated photovoltaic can provide a part of the electricity demand. Many studies are related to the module efficiency. However, architectural integration, optical and thermal properties also require attention. Semi-transparent modules are especially interesting for architectural integration in the glazed part of the façade. Dye sensitized solar cells, offering color and semi-transparency, are in the process of market introduction. However, dye-sensitized solar cells are fragile and there are not many examples of architectural integration due to the technical challenge of introducing these cells in a glazing. A glazing containing colored photovoltaic modules could be used to design an active façade. In order to determine the thermal behaviour of the building, the precise optical and thermal properties of the used materials need to be known. Performances of semi-transparent photovoltaic modules based on dye-sensitized solar cells were investigated. These modules come from the same manufacturer, using the same technology. However, they differ in terms of shades and nuances. Common practice is to indicate optical properties at normal angle of incidence. Yet, for most latitudes, the properties for a large range of angles of incidence are more relevant. Therefore, the spectral transmittance and the reflectance were measured at 12 angles of incidence ranging from 0° to 75°. From these data, the solar direct transmittance τe, the solar direct reflectance ρe and the visible transmittance τv and selectivity were calculated. The solar gain factor was determined on a prototype double glazing under illumination with a solar simulator by measuring the temperatures of the external and inner surface of the product. Combined with the values of absorptance obtained from the transmittance and reflectance values, this measurement allows us to determine the internal heat transfer coefficient qi and thus the solar gain factor of the double glazing (also called total energetic transmittance or g-value). Final performance of a façade containing these modules will depend on the composition of the double glazing in which they will be laminated. The performance of the module itself will help to determine the best composition for each climate. For instance, a solar protection coating may be needed. The modules can be laminated to a glass pane and then be assembled in a double glazing. Therefore the architectural integration is facilitated and compatible with existing façade systems. In highly glazed building, a part of the façade could then be a photovoltaic façade and deliver a fraction of the energy demand while providing colourful options to enhance the aesthetic of the building.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (34)
Building-integrated photovoltaics
Building-integrated photovoltaics (BIPV) are photovoltaic materials that are used to replace conventional building materials in parts of the building envelope such as the roof, skylights, or facades. They are increasingly being incorporated into the construction of new buildings as a principal or ancillary source of electrical power, although existing buildings may be retrofitted with similar technology.
Solar cell
A solar cell, or photovoltaic cell, is an electronic device that converts the energy of light directly into electricity by the photovoltaic effect, which is a physical phenomenon. It is a form of photoelectric cell, defined as a device whose electrical characteristics, such as current, voltage, or resistance, vary when exposed to light. Individual solar cell devices are often the electrical building blocks of photovoltaic modules, known colloquially as solar panels.
Dye-sensitized solar cell
A dye-sensitized solar cell (DSSC, DSC, DYSC or Grätzel cell) is a low-cost solar cell belonging to the group of thin film solar cells. It is based on a semiconductor formed between a photo-sensitized anode and an electrolyte, a photoelectrochemical system. The modern version of a dye solar cell, also known as the Grätzel cell, was originally co-invented in 1988 by Brian O'Regan and Michael Grätzel at UC Berkeley and this work was later developed by the aforementioned scientists at the École Polytechnique Fédérale de Lausanne (EPFL) until the publication of the first high efficiency DSSC in 1991.
Show more
Related publications (82)

Advanced Manufacturing and Characterization of Building-Integrated Photovoltaic Modules

Alejandro Borja Block

Photovoltaic (PV) technology is necessary for global decarbonization. However, one of the challenges of the technology is that its land use may conflict with other space demands. Building-integrated photovoltaic (BIPV) is a solution to efficiently use the ...
EPFL2024

Correlating long-term performance and aging behaviour of building integrated PV modules

Christophe Ballif, Alessandro Francesco Aldo Virtuani, Ebrar Özkalay

Because building-integrated photovoltaic (BIPV) modules are fully integrated into a building envelope, the back of the module can be exposed to little or no ventilation, resulting in increased operating temperatures. As the temperature increases, the perfo ...
Elsevier Science Sa2024

Processing factors affecting roughness, optical and mechanical properties of nanocellulose films for optoelectronics

Tiffany Abitbol

This work aims to understand how nanocellulose (NC) processing can modify the key characteristics of NC films to align with the main requirements for high-performance optoelectronics. The performance of these devices relies heavily on the light transmittan ...
Elsevier Sci Ltd2024
Show more
Related MOOCs (7)
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.