Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We prove a Szemeredi-Trotter type theorem and a sum product estimate in the setting of finite quasifields. These estimates generalize results of the fourth author, of Garaev, and of Vu. We generalize results of Gyarmati and Sarkozy on the solvability of th ...
Nowadays, one area of research in cryptanalysis is solving the Discrete Logarithm Problem (DLP) in finite groups whose group representation is not yet exploited. For such groups, the best one can do is using a generic method to attack the DLP, the fastest ...
Fix a prime number l. Graphs of isogenies of degree a power of l are well-understood for elliptic curves, but not for higher-dimensional abelian varieties. We study the case of absolutely simple ordinary abelian varieties over a finite field. We analyse gr ...
Distance bounding protocols become more and more important because they are the most accurate solution to defeat relay attacks. They consist of two parties: a verifier and a prover. The prover shows that (s)he is close enough to the verifier. In some appli ...
The worst-case hardness of finding short vectors in ideals of cyclotomic number fields (Ideal-SVP) is a central matter in lattice based cryptography. Assuming the worst-case hardness of Ideal-SVP allows to prove the Ring-LWE and Ring-SIS assumptions, and t ...
The security of public-key cryptography relies on well-studied hard problems, problems for which we do not have efficient algorithms. Factorization and discrete logarithm are the two most known and used hard problems. Unfortunately, they can be easily solv ...
In 2013 and 2014 a revolution took place in the understanding of the discrete logarithm problem (DLP) in finite fields of small characteristic. Consequently, many cryptosystems based on cryptographic pairings were rendered completely insecure, which serves ...
It is well-known that a finite group possesses a universal central extension if and only if it is a perfect group. Similarly, given a prime number p, we show that a finite group possesses a universal p′-central extension if and only if the p′-part of its a ...
For any positive integers n≥3,r≥1 we present formulae for the number of irreducible polynomials of degree n over the finite field F2r where the coefficients of xn−1, xn−2 and xn−3 are zero. Our proofs involve coun ...
For~q a prime power, the discrete logarithm problem (DLP) in~\Fq consists in finding, for any g∈Fq× and h∈⟨g⟩, an integer~x such that gx=h. We present an algorithm for computing discrete logarithm ...