Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
The standard approach to compressive sampling considers recovering an unknown deterministic signal with certain known structure, and designing the sub-sampling pattern and recovery algorithm based on the known structure. This approach requires looking for a good representation that reveals the signal structure, and solving a non-smooth convex minimization problem (e.g., basis pursuit). In this paper, another approach is considered: We learn a good sub-sampling pattern based on available training signals, without knowing the signal structure in advance, and reconstruct an accordingly sub-sampled signal by computationally much cheaper linear reconstruction. We provide a theoretical guarantee on the recovery error, and show via experiments on real-world MRI data the effectiveness of the proposed compressive MRI scheme.
Rodrigo Cerqueira Gonzalez Pena