Scheduling (production processes)Scheduling is the process of arranging, controlling and optimizing work and workloads in a production process or manufacturing process. Scheduling is used to allocate plant and machinery resources, plan human resources, plan production processes and purchase materials. It is an important tool for manufacturing and engineering, where it can have a major impact on the productivity of a process. In manufacturing, the purpose of scheduling is to keep due dates of customers and then minimize the production time and costs, by telling a production facility when to make, with which staff, and on which equipment.
Unique games conjectureIn computational complexity theory, the unique games conjecture (often referred to as UGC) is a conjecture made by Subhash Khot in 2002. The conjecture postulates that the problem of determining the approximate value of a certain type of game, known as a unique game, has NP-hard computational complexity. It has broad applications in the theory of hardness of approximation. If the unique games conjecture is true and P ≠ NP, then for many important problems it is not only impossible to get an exact solution in polynomial time (as postulated by the P versus NP problem), but also impossible to get a good polynomial-time approximation.
Job-shop schedulingJob-shop scheduling, the job-shop problem (JSP) or job-shop scheduling problem (JSSP) is an optimization problem in computer science and operations research. It is a variant of optimal job scheduling. In a general job scheduling problem, we are given n jobs J1, J2, ..., Jn of varying processing times, which need to be scheduled on m machines with varying processing power, while trying to minimize the makespan – the total length of the schedule (that is, when all the jobs have finished processing).
QuestionA question is an utterance which serves as a request for information. Questions are sometimes distinguished from interrogatives, which are the grammatical forms typically used to express them. Rhetorical questions, for instance, are interrogative in form but may not be considered bona fide questions, as they are not expected to be answered. Questions come in a number of varieties. Polar questions are those such as the English example "Is this a polar question?", which can be answered with "yes" or "no".
Random-access machineIn computer science, random-access machine (RAM) is an abstract machine in the general class of register machines. The RAM is very similar to the counter machine but with the added capability of 'indirect addressing' of its registers. Like the counter machine, The RAM has its instructions in the finite-state portion of the machine (the so-called Harvard architecture). The RAM's equivalent of the universal Turing machine with its program in the registers as well as its data is called the random-access stored-program machine or RASP.
ScheduleA schedule or a timetable, as a basic time-management tool, consists of a list of times at which possible tasks, events, or actions are intended to take place, or of a sequence of events in the chronological order in which such things are intended to take place. The process of creating a schedule — deciding how to order these tasks and how to commit resources between the variety of possible tasks — is called scheduling, and a person responsible for making a particular schedule may be called a scheduler.
Yes–no questionIn linguistics, a yes–no question, also known as a binary question, a polar question, or a general question, is a question whose expected answer is one of two choices, one that provides an affirmative answer to the question versus one that provides a negative answer to the question. Typically, in English, the choices are either "yes" or "no". Yes–no questions present an exclusive disjunction, namely a pair of alternatives of which only one is a felicitous answer.
MachineA machine is a physical system using power to apply forces and control movement to perform an action. The term is commonly applied to artificial devices, such as those employing engines or motors, but also to natural biological macromolecules, such as molecular machines. Machines can be driven by animals and people, by natural forces such as wind and water, and by chemical, thermal, or electrical power, and include a system of mechanisms that shape the actuator input to achieve a specific application of output forces and movement.