Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Recent advances in the field of metamaterials have shown that waves can be efficiently manipulated at the subwavelength scale through the interactions with an ensemble of resonant inclusions, opening new horizons in overcoming the size limits of devices wh ...
The recently proposed concept of metamaterials has opened exciting venues to control wave-matter interactions in unprecedented ways. Here, we demonstrate the relevance of metamaterials for inducing acoustic birefringence, a phenomenon which has already fou ...
Initially proposed to achieve strong noise isolation levels beyond the mass-density law, acoustic metamaterials (AMMs) have now overturned the conventional views in all aspects of sound propagation and manipulation. In fact, within the last two decades, th ...
The utilization of subwavelength resonators, such as small electric dipoles, plasmonic resonators, or objects made of materials with a high dielectric constant, has enabled the manipulation of electromagnetic fields down to the subwavelength regime with sy ...
Funneling acoustic waves through largely mismatched channels is of fundamental importance to tailor and transmit sound for a variety of applications. In electromagnetics, zero-permittivity metamaterials have been used to enhance the coupling of energy in a ...
This thesis deals with electromagnetic inspired acoustic metamaterials, enabling sound-matter interactions in different wave scenarios that include propagation, guided-waves, radiation, refraction, reflection and transmission. To this end, a particular emp ...
We study the unique wave manipulation capabilities of Parity-Time symmetric pairs of metasurfaces operated at exceptional point conditions. We demonstrate theoretically and experimentally the relevance of these systems to induce wave phenomena typically ob ...
Gap-plasmons (GP) in metal-insulator-metal (MIM) structures have shown exceptional performance in guiding and concentrating light within deep subwavelength layers. Reported designs to date exploit tapered thicknesses of the insulating layer in order to con ...
We explore the largely uncharted scattering properties of acoustic systems that are engineered to be invariant under a special kind of space-time symmetry, consisting in taking their mirror image and running time backwards. Known as Parity-Time symmetry, t ...
A concept for acoustic metamaterials consisting of a cellular medium with fluid-filled cells is fabricated and studied experimentally. In such a system, the fluid and solid structure explicitly interact, and elastic wave propagation is coupled to both phas ...