Improving charge collection with delafossite photocathodes: a host–guest CuAlO2/CuFeO2 approach
Related publications (35)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
With growing concerns on future energy supplies, solar energy appears as an energy source whose potential remains to be tapped at a large scale. In the last two decades, dye-sensitized solar cells (DSCs) have been considered as a competitive means to conve ...
A sustainable route to store the energy provided by the Sun, is to directly convert sunlight into molecular hydrogen using a semiconductor performing water photolysis. Hematite (α-Fe2O3) is promising for this application due to its ample abundance, chemica ...
Dye-sensitized solar cells (DSCs) are one of the most promising environmental friendly and low material costs photovoltaic devices. DSCs accomplish the separation of the optical absorption and charge separation processes by the association of a sensitizer ...
The tandem photoelectochemical (PEC) cell based on oxide semiconductors for water splitting offers a potentially inexpensive route for solar hydrogen generation. At the heart of the device, a nanostructured photoanode for water oxidation is connected in se ...
Solar energy represents an abundant (1000 W·m-2) and seemingly cheap source of energy. One way to tap it is to transform light into electricity with photovoltaic devices. Single junction solar cells presently reach 32% conversion yield under 1-sun illumina ...
Dye-sensitized solar cells (DSCs) are considered as an emerging technology in order to replace conventional silicon solar cells or thin film solar cells such as amorphous silicon, CIGS, and CdTe. Liquid electrolytes containing iodide/triiodide redox couple ...
Dye-sensitized solar cells (DSC) are a new class of molecular photovoltaics that mimics the natural photosynthesis, for the direct conversion of sunlight into electricity. A typical DSC is a sandwich of a dye sensitized nanoparticle TiO2 film and a catalys ...
Thin-film solar cells based on amorphous and microcrystalline silicon require thin photoactive layers to ensure a satisfactory collection of the photogenerated carriers. The small thickness is advantageous in terms of raw material consumption and industria ...
Photocathodes based on cuprous oxide (Cu2O) are promising materials for large scale and widespread solar fuel generation due to the abundance of copper, suitable bandgap, and favorable band alignments for reducing water and carbon dioxide. A protective ove ...
Photo-induced charge separation and charge transport are fundamental processes in many energy conversion techniques, where light is converted into chemical energy (PEC), into electrical energy (solar cells) or in the opposite sense if electrical energy is ...