Several different formulas exist to predict the ascent speed of gas bubbles and oil droplets released in deep waters. Similarly, different formulas are also available to predict the mass transfer coefficient of compounds dissolving into water during ascent. However, the formulas used by different authors for the modeling of the ascent and mass transfer processes of liquid oil droplets or gas bubbles under pressure can lead to widely different predictions. In this work, we investigate the abilities of different formulas to reproduce literature laboratory data for the ascent speed and mass transfer coefficient for liquid droplets and gas bubbles under pressure. We found that the ascent speed is usually well predicted by a combination of formulas by Clift et al. (1978) or by the Fan-Tsuchiya equation, with mean errors
Andreas Mortensen, David Hernandez Escobar, Léa Deillon, Alejandra Inés Slagter, Eva Luisa Vogt, Jonathan Aristya Setyadji
Christophe Marcel Georges Galland, Valeria Vento, Sachin Suresh Verlekar, Philippe Andreas Rölli
,