Identification of defect distribution at ferroelectric domain walls from evolution of nonlinear dielectric response during the aging process
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We reveal a strong elastic interaction between nonferroelastic domain walls in ferroelectric thin films. This interaction, having no analogue in bulk materials, is governed by elastic fields that are associated with the domain walls and extends to distance ...
Magnetic sensing and logic devices based on the motion of magnetic domain walls rely on the precise and deterministic control of the position and the velocity of individual magnetic domain walls in curved nanowires. Varying domain wall velocities have been ...
A uniaxial compressive stress significantly modifies the dielectric and piezoelectric response of Pb(Zr,Ti)O3 (PZT)-based piezoceramics. In soft PZT, the pre-stress decreases both the piezoelectric coefficient and its increment with increasing dynamical st ...
Ferroelectrics are materials with a spontaneous electrical polarization, which can be switched by an applied electric field between two or more stable orientations permitted by symmetry. The regions where the ferroelectric material is polarized in one dire ...
This thesis consists of a theoretical analysis of charged domain walls in ferroelectrics based on Landau theory and the theory of semiconductors. First, the internal structure of a 180-degree charged domain wall is considered. It is shown that different re ...
The role of long-range strain interactions on domain wall dynamics is explored through macroscopic and local measurements of nonlinear behavior in mechanically clamped and released polycrystalline lead zirconate-titanate (PZT) films. Released films show a ...
A first-principles-based effective Hamiltonian technique is developed to study flexoelectricity in (Ba0.5Sr0.5)TiO3 thin films of different thicknesses in their paraelectric phase. The magnitude as well as sign of individual components of the flexoelectric ...
The influence of flexoelectric coupling on the internal structure of neutral domain walls in the tetragonal phase of perovskite ferroelectrics is studied. The effect is shown to lower the symmetry of 180 degrees walls which are oblique with respect to the ...
The properties of ferroelectric materials, such as lead zirconate titanate (PZT), are heavily influenced by the interaction of defects with domain walls. These defects are either intrinsic or are induced by the addition of dopants. We study here PbTiO3 (th ...
Longitudinal piezoelectric coefficient of a twinned ferroelectric perovskite material with an array of partially compensated head-to-head and tail-to-tail 90-degree domain walls has been studied by phase-field simulations in the framework of the Ginzburg-L ...