Olfaction in birds: differential embryonic expression of nine putative odorant receptor genes in the avian olfactory system
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The aim of this study is to contribute to understand the physiology of the Olfactory System through detailed microcircuit investigation, adopting advanced electrophysiological and anatomical techniques. Multiple patch clamp recordings allow understanding t ...
Much information is conveyed to animals by the diverse molecules propagated in their environment. This information is transmitted and treated within the olfactory system to be utilized by the rest of the brain. In this process, the sensory flow arriving fr ...
Olfaction and the olfactory pathway is a good system to study sensory processing in general, mainly because of the simplified organization of the cells constituting the olfactory bulb, the anatomical structure responsible for early odor encoding and proces ...
Olfaction, the detection of odorous chemicals in the environment, is one of the oldest mammalian sensory systems and involves large number (up to 1000) of distinct G protein coupled olfactory receptors (OR). The chemical interaction of volatile molecules w ...
The olfactory system is a highly specialized chemodetector capable of discriminating between thousands of volatile chemical substances. This enormous capacity of chemical recognition is based on a large family of olfactory receptors (ORs). Despite the fact ...
The animal olfactory system represents the gold standard of olfactory biosensors with its capability to identify and discriminate thousands of odorant compounds. In order to mimic the performances of natural olfactory sensors it is necessary to develop met ...
Optical imaging techniques offer powerful solutions to capture brain networks processing in animals, especially when activity is distributed in functionally distinct spatial domains. Despite the progress in imaging techniques, the standard analysis procedu ...
We have screened an odorant compound library and discovered molecules acting as chemical signals that specifically activate both G-protein-coupled olfactory receptors (ORs) on the cell surface of olfactory sensory neurons and the human nuclear estrogen rec ...
American Society for Biochemistry and Molecular Biology2009
Although understanding of the olfactory system has progressed at the level of downstream receptor signaling and the wiring of olfactory neurons, the system remains poorly understood at the molecular level of the receptors and their interaction with and rec ...
The animal olfactory system represents the gold standard of biosensors, due to its ability to identify and discriminate thousands of odorant compounds with very low thresholds. Using olfactory receptors (ORs) as sensing elements instead of chemical sensors ...