High-Order Accurate Adaptive Kernel Compression Time-Stepping Schemes for Fractional Differential Equations
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We propose two new and enhanced algorithms for greedy sampling of high- dimensional functions. While the techniques have a substantial degree of generality, we frame the discussion in the context of methods for empirical interpolation and the devel- opment ...
The aim of this project is to implement the Rosenbrock method ROS3P in the C++ Finite Element library LifeV for the solution of systems of ordinary differential equations arising in electrophysiology. In the domain of electrophysiology LifeV implements car ...
The convex ℓ1-regularized logdet divergence criterion has been shown to produce theoretically consistent graph learning. However, this objective function is challenging since the ℓ1-regularization is nonsmooth, the logdet objective is n ...
We revisit the problem of extending the notion of principal component analysis (PCA) to multivariate datasets that satisfy nonlinear constraints, therefore lying on Riemannian manifolds. Our aim is to determine curves on the manifold that retain their cano ...
We introduce a new family of explicit integrators for stiff Ito stochastic differential equations (SDEs) of weak order two. These numerical methods belong to the class of one-step stabilized methods with extended stability domains and do not suffer from th ...
The convex l(1)-regularized log det divergence criterion has been shown to produce theoretically consistent graph learning. However, this objective function is challenging since the l(1)-regularization is nonsmooth, the log det objective is not globally Li ...
Multiscale differential equations arise in the modeling of many important problems in the science and engineering. Numerical solvers for such problems have been extensively studied in the deterministic case. Here, we discuss numerical methods for (mean-squ ...
Stabilized or Chebyshev explicit methods have been widely used in the past to solve stiff ordinary differential equations. Making use of special properties of Chebyshev-like polynomials, these methods have favorable stability properties compared to standar ...
Parametrized systems of Differential Algebraic Equations (DAEs) stand at the base of several mathematical models in Microelectronics, Computational Fluid Dynamics and other Engineering fields. Since the dimension of these systems can be huge, high computat ...
Despite the popularity of high-order explicit Runge-Kutta (ERK) methods for integrating semi-discrete systems of equations, ERK methods suffer from severe stability-based time step restrictions for very stiff problems. We implement a discontinuous Galerkin ...