Exploiting Low-dimensional Structures to Enhance DNN based Acoustic Modeling in Speech Recognition
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We leverage the recent algorithmic advances in compressive sensing, and propose a novel source separation algorithm for efficient recovery of convolutive speech mixtures in spectro-temporal domain. Compared to the common sparse component analysis technique ...
This paper discusses and optimizes an HMM/GMM based User-Customized Password Speaker Verification (UCP-SV) system. Unlike text-dependent speaker verification, in UCP-SV systems, customers can choose their own passwords with no lexical constraints. The pass ...
Sparse Component Analysis is a relatively young technique that relies upon a representation of signal occupying only a small part of a larger space. Mixtures of sparse components are disjoint in that space. As a particular application of sparsity of speech ...
In sparse signal representation, the choice of a dictionary often involves a tradeoff between two desirable properties – the ability to adapt to specific signal data and a fast implementation of the dictionary. To sparsely represent signals residing on wei ...
Institute of Electrical and Electronics Engineers2014
We leverage the recent algorithmic advances in compressive sensing, and propose a novel source separation algorithm for efficient recovery of convolutive speech mixtures in spectro-temporal domain. Compared to the common sparse component analysis technique ...
We leverage the recent algorithmic advances in compressive sensing, and propose a novel source separation algorithm for efficient recovery of convolutive speech mixtures in spectro-temporal domain. Compared to the common sparse component analysis technique ...
IEEE Service Center, 445 Hoes Lane, PO Box 1331, Piscataway, NJ 08855-1331 USA2011
In this paper, to learn multiple tasks sharing same inputs, a two-layer architecture for a reservoir based recurrent neural network is proposed. The inputs are fed into the general workspace layer where the weights are adapted to provide maximum informatio ...
This paper discusses and optimizes an HMM/GMM based User-Customized Password Speaker Verification (UCP-SV) system. Unlike text-dependent speaker verification, in UCP-SV systems, customers can choose their own passwords with no lexical constraints. The pass ...
In this paper, we present a new approach towards user-custom-ized password speaker verification combining the advantages of hybrid HMM/ANN systems, using Artificial Neural Networks (ANN) to estimate emission probabilities of Hidden Markov Models, and Gaus ...
In this paper, we present a new approach towards user-custom-ized password speaker verification combining the advantages of hybrid HMM/ANN systems, using Artificial Neural Networks (ANN) to estimate emission probabilities of Hidden Markov Models, and Gaus ...