Acoustic data-driven grapheme-to-phoneme conversion in the probabilistic lexical modeling framework
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In light of steady progress in machine learning, automatic speech recognition (ASR) is entering more and more areas of our daily life, but people with dysarthria and other speech pathologies are left behind. Their voices are underrepresented in the trainin ...
Atypical aspects in speech concern speech that deviates from what is commonly considered normal or healthy. In this thesis, we propose novel methods for detection and analysis of these aspects, e.g. to monitor the temporary state of a speaker, diseases tha ...
We study a stochastic program where the probability distribution of the uncertain problem parameters is unknown and only indirectly observed via finitely many correlated samples generated by an unknown Markov chain with d states. We propose a data-driven d ...
This work proposes a multi-agent filtering algorithm over graphs for finite-state hidden Markov models (HMMs), which can be used for sequential state estimation or for tracking opinion formation over dynamic social networks. We show that the difference fro ...
Adaptability and ease of programming are key features necessary for a wider spread of robotics in factories and everyday assistance. Learning from demonstration (LfD) is an approach to address this problem. It aims to develop algorithms and interfaces such ...
The goal of this thesis is to improve current state-of-the-art techniques in speaker verification
(SV), typically based on âidentity-vectorsâ (i-vectors) and deep neural network (DNN), by exploiting diverse (phonetic) information extracted using variou ...
The recent increase in social media based propaganda, i.e., ‘fake news’, calls for automated methods to detect tampered content. In this paper, we focus on detecting tampering in a video with a person speaking to a camera. This form of manipulation is easy ...
State-of-the-art acoustic models for Automatic Speech Recognition (ASR) are based on Hidden Markov Models (HMM) and Deep Neural Networks (DNN) and often require thousands of hours of transcribed speech data during training. Therefore, building multilingual ...
We propose an information theoretic framework for quantitative assessment of acoustic models used in hidden Markov model (HMM) based automatic speech recognition (ASR). The HMM backend expects that (i) the acoustic model yields accurate state conditional e ...
In hidden Markov model (HMM) based automatic speech recognition (ASR) system, modeling the statistical relationship between the acoustic speech signal and the HMM states that represent linguistically motivated subword units such as phonemes is a crucial st ...