Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The tensile strength and ductility of fiber-reinforced composites containing ductile metal fibers is studied using a multiscale approach and compared to the performance of an identical composite containing elastic fibers. A finite element model of stress r ...
The classical Aveston-Cooper-Kelly shear-lag model for predicting the first matrix cracking strength in a brittle matrix composite is extended to the case of a hybrid brittle matrix composite containing both micro-scale and nano-scale fibers. First, closed ...
A model for predicting composite material strength degradation under elevated and high temperatures is proposed. This model is based on the morphology of the mixture of materials in different states. The degradation of resin-dominated shear strength can be ...
Wood fibre reinforced polylactic acid (PLA) composite foams have been successfully produced using supercritical carbon dioxide. A significant increase of specific properties, both stiffness and strength, was achieved by adding 5-10 wt% wood fibres. The exp ...
Composite materials are increasingly used in high volume automotive applications, usually as a replacement for assemblies of multiple metallic parts such as stamped and spot-welded steel sheets. One of the motivations is to reduce tooling and assembly cost ...
In metal matrix composites, a metal is combined with another, often nonmetallic, phase to produce a novel material having attractive engineering attributes of its own. A subject of much research in the 1980s and 1990s, this class of materials has, in the p ...
We present an analytical micromechanical model designed to simulate the tensile stress-strain behaviour and failure of damaging composites containing a high volume fraction of reinforcing particles. One internal damage micromechanism is considered, namely ...
The role of reinforcing phase contiguity in high volume fraction particulate composites is investigated using model composites of pure aluminium reinforced with α-Al2O3 particles. To produce the composites, alumina particle (5µm) preforms were either loose ...
The thermal conductivity of aluminum matrix composites having a high volume fraction of SiC particles is investigated by comparing data for composites fabricated by infiltrating liquid aluminum into preforms made either from a single particle size, or by m ...
Internal damage in uniaxial continuous alumina fibre-reinforced aluminium is measured by acoustic emission during tensile straining in the fibre direction. Over most of the loading history spatially uncorrelated fibre fragmentation occurs, consistent with ...