**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# Exact Convex Modeling of the Optimal Power Flow for the Operation and Planning of Active Distribution Networks with Energy Storage Systems

Abstract

The distribution networks are experiencing important changes driven by the massive integration of renewable energy conversion systems. However, the lack of direct controllability of the Distributed Generations (DGs) supplying Active Distribution Networks (ADNs) represents a major obstacle to the increase of the penetration of renewable energy resources characterized by a non-negligible volatility. The successful development of ADNs depends on the combination of i) specific control tools and ii) availability of new technologies and controllable resources. Within this context, this thesis focuses on developing practical and scalable methodologies for the ADN planning and operation with particular reference to the integration of Energy Storage Systems (ESSs) owned, and directly controlled, by the Distribution Network Operators (DNOs). In this respect, an exact convex formulation of Optimal Power Flow (OPF), called AR-OPF, is first proposed for the case of radial power networks. The proposed formulation takes into account the correct model of the lines and the security constraints related to the nodal voltage magnitudes, as well as, the lines ampacity limits. Sufficient conditions are provided to guarantee that the solution of the AR-OPF is feasible and optimal (i.e., the relaxation used is exact). Moreover, by analyzing the exactness conditions, it is revealed that they are mild and hold for real distribution networks. The AR-OPF is further augmented by suitably incorporating radiality constraints in order to develop an optimization model for optimal reconfiguration of ADNs. Then, a two-stage optimization problem for day-ahead resource scheduling in ADNs, accounting for the uncertainties of nodal injections, is proposed. The Adaptive Robust Optimization (ARO) and stochastic optimization techniques are successfully adapted to solve this optimization problem. The solutions of ARO and stochastic optimization reveal that the ARO provides a feasible solution for any realization of the uncertain parameters even if its solution is optimal only for the worst case realization. On the other hand, the stochastic optimization provides a solution taking into account the probability of the considered scenarios. Finally, the problem of optimal resource planning in ADNs is investigated with particular reference to the ESSs. In this respect, the AR-OPF and the proposed ADN reconfiguration model, are employed to develop optimization models for the optimal siting and sizing of ESSs in ADNs. The objective function aims at finding the optimal trade-off between technical and economical goals. In particular, the proposed procedures accounts for (i) network voltage deviations, (ii) feeders/lines congestions, (iii) network losses, (iv) cost of supplying loads (from external grid or local producers) together with the cost of ESS investment/maintenance, (v) load curtailment and (vi) stochasticity of loads and renewables production. The use of decomposition methods for solving the targeted optimization problems with discrete variables and probable large size is investigated. More specifically, Benders decomposition and Alternative Direction Method of Multipliers (ADMM) techniques are successfully applied to the targeted problems. Using real and standard networks, it is shown that the ESSs could possibly prevent load and generation curtailment, reduce the voltage deviations and lines congestions, and do the peak shaving.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related MOOCs (15)

Related concepts (37)

Related publications (185)

SES Swiss-Energyscope

La transition énergique suisse / Energiewende in der Schweiz

SES Swiss-Energyscope

La transition énergique suisse / Energiewende in der Schweiz

Introduction to optimization on smooth manifolds: first order methods

Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).

Mathematical optimization

Mathematical optimization (alternatively spelled optimisation) or mathematical programming is the selection of a best element, with regard to some criterion, from some set of available alternatives. It is generally divided into two subfields: discrete optimization and continuous optimization. Optimization problems arise in all quantitative disciplines from computer science and engineering to operations research and economics, and the development of solution methods has been of interest in mathematics for centuries.

Multi-objective optimization

Multi-objective optimization or Pareto optimization (also known as multi-objective programming, vector optimization, multicriteria optimization, or multiattribute optimization) is an area of multiple-criteria decision making that is concerned with mathematical optimization problems involving more than one objective function to be optimized simultaneously. Multi-objective is a type of vector optimization that has been applied in many fields of science, including engineering, economics and logistics where optimal decisions need to be taken in the presence of trade-offs between two or more conflicting objectives.

Global optimization

Global optimization is a branch of applied mathematics and numerical analysis that attempts to find the global minima or maxima of a function or a set of functions on a given set. It is usually described as a minimization problem because the maximization of the real-valued function is equivalent to the minimization of the function . Given a possibly nonlinear and non-convex continuous function with the global minima and the set of all global minimizers in , the standard minimization problem can be given as that is, finding and a global minimizer in ; where is a (not necessarily convex) compact set defined by inequalities .

Michel Bierlaire, Léa Massé Ricard

Fifty years ago, transportation and logistics problems were primarily analyzed either from a supply-side or a demand-side perspective, with the fields of operations research and demand modeling evolving separately. Since then, there has been a growing inte ...

2024Wenlong Liao, Qi Liu, Zhe Yang

Reactive power optimization of distribution networks is traditionally addressed by physical model based methods, which often lead to locally optimal solutions and require heavy online inference time consumption. To improve the quality of the solution and r ...

,

The load tracking performance of combined cooling, heating, and power multi-energy system (CCHP-MES) greatly depends on the equipment capacity configuration. And the frequent fluctuations in the source-load uncertainty puts higher demands on the load track ...