Publication

A sparse reconstruction framework for Fourier-based plane wave imaging

Abstract

Ultrafast imaging based on plane-wave (PW) insonification is an active area of research due to its capability of reaching high frame rates. Among PW imaging methods, Fourier-based approaches have demonstrated to be competitive compared to traditional delay and sum methods. Motivated by the success of compressed sensing techniques in other Fourier imaging modalities, like magnetic resonance imaging, we propose a new sparse regularization framework to reconstruct high quality ultrasound images. The framework takes advantage of both the ability to formulate the imaging inverse problem in the Fourier domain and the sparsity of ultrasound images in a sparsifying domain. We show, by means of simulations, in vitro and in vivo data, that the proposed framework significantly reduces image artifacts, i.e. measurement noise and side lobes, compared to classical methods, leading to an increase of the image quality.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.