Fuel cell busA fuel cell bus is a bus that uses a hydrogen fuel cell as its power source for electrically driven wheels, sometimes augmented in a hybrid fashion with batteries or a supercapacitor. The only emission from the bus is water. Several cities around the world have trialled and tested fuel cell buses, with over 5,600 buses in use worldwide, the majority of which are in China. Owing to the greenhouse gas emissions and particulate pollution produced by diesel buses, transport operators have been moving towards greener and cleaner buses (such as hybrid electric buses and battery electric buses) since the early 2000s.
Hydrogen storageSeveral methods exist for storing hydrogen. These include mechanical approaches such as using high pressures and low temperatures, or employing chemical compounds that release H2 upon demand. While large amounts of hydrogen are produced by various industries, it is mostly consumed at the site of production, notably for the synthesis of ammonia. For many years hydrogen has been stored as compressed gas or cryogenic liquid, and transported as such in cylinders, tubes, and cryogenic tanks for use in industry or as propellant in space programs.
Three-sector modelThe three-sector model in economics divides economies into three sectors of activity: extraction of raw materials (primary), manufacturing (secondary), and service industries which exist to facilitate the transport, distribution and sale of goods produced in the secondary sector (tertiary). The model was developed by Allan Fisher, Colin Clark, and Jean Fourastié in the first half of the 20th century, and is a representation of an industrial economy. It has been criticised as inappropriate as a representation of the economy in the 21st century.
Energy transitionAn energy transition (or energy system transformation) is a significant structural change in an energy system regarding supply and consumption. Currently, a transition to sustainable energy (mostly renewable energy) is underway to limit climate change. It is also called renewable energy transition. The current transition is driven by a recognition that global greenhouse-gas emissions must be drastically reduced. This process involves phasing-down fossil fuels and re-developing whole systems to operate on low carbon electricity.
Glossary of fuel cell termsThe Glossary of fuel cell terms lists the definitions of many terms used within the fuel cell industry. The terms in this fuel cell glossary may be used by fuel cell industry associations, in education material and fuel cell codes and standards to name but a few. Activation loss See overpotential Adsorption Adsorption is a process that occurs when a gas or liquid solute accumulates on the surface of a solid or a liquid (adsorbent), forming a film of molecules or atoms (the adsorbate).
Green hydrogenGreen hydrogen (GH2 or GH2) is hydrogen generated by renewable energy or from low-carbon power. Green hydrogen has significantly lower carbon emissions than grey hydrogen, which is derived from fossil fuels without carbon capture. Green hydrogen may be used to decarbonize sectors that are hard to electrify, such as cement and iron production. Green hydrogen can be used to produce green ammonia, the main constituent of synthetic fertilizer. It can also be used for long-duration grid energy storage, and for long-duration seasonal energy storage.
Voluntary sectorThe voluntary sector, independent sector, or civic sector is the realm of social activity undertaken by organizations that are non-governmental nonprofit organizations. This sector is also called the third sector, community sector, and nonprofit sector, in contrast to the public sector and the private sector. Civic sector or social sector are other terms for the sector, emphasizing its relationship to civil society. Richard Cornuelle coined the term "independent sector" and was one of the first scholars to point out the vast impact and unique mechanisms of this sector.
Solid oxide fuel cellA solid oxide fuel cell (or SOFC) is an electrochemical conversion device that produces electricity directly from oxidizing a fuel. Fuel cells are characterized by their electrolyte material; the SOFC has a solid oxide or ceramic electrolyte. Advantages of this class of fuel cells include high combined heat and power efficiency, long-term stability, fuel flexibility, low emissions, and relatively low cost. The largest disadvantage is the high operating temperature which results in longer start-up times and mechanical and chemical compatibility issues.
Primary energyPrimary energy (PE) is the energy found in nature that has not been subjected to any human engineered conversion process. It encompasses energy contained in raw fuels and other forms of energy, including waste, received as input to a system. Primary energy can be non-renewable or renewable. Primary energy is used in energy statistics in the compilation of energy balances, as well as in the field of energetics. In energetics, a primary energy source (PES) refers to the energy forms required by the energy sector to generate the supply of energy carriers used by human society.
Economic sectorOne classical breakdown of economic activity distinguishes three sectors: Primary: involves the retrieval and production of raw-material commodities, such as corn, coal, wood or iron. Miners, farmers and fishermen are all workers in the primary sector. Secondary: involves the transformation of raw or intermediate materials into goods, as in steel into cars, or textiles into clothing. Builders and dressmakers work in the secondary sector. Tertiary: involves the supplying of services to consumers and businesses, such as babysitting, cinemas or banking.