Solving the 3D structure of a biomolecule requires recognition of its conformers and measurements of their individual structural identities, which can be compared with calculations. We employ the phenomenon of nonstatistical photofragmentation, detected by a combination of UV cold ion spectroscopy and high-resolution mass spectrometry, to identify the main conformers of gas-phase peptides and to recover individual UV absorption and mass spectra of all of these conformers in a single laser scan. We first validate this approach with a benchmark dipeptide, Tyr-Ala, and then apply it to a decapeptide, gramicidin S. The revealed characteristic structural difference between the conformers of the latter identifies some of the previously calculated structures of gramicidin S as the most likely geometries of its remaining unsolved conformer.
Ivo Fabio Beck, Benjamin Jérémy Laurent Heutte, Imad El Haddad, Jakob Boyd Pernov, Hélène Paule Angot, Lubna Dada
Julia Schmale, Ivo Fabio Beck, Benjamin Jérémy Laurent Heutte, Imad El Haddad, Jakob Boyd Pernov, Hélène Paule Angot, Lubna Dada