A Discontinuous Galerkin Reduced Basis Element Method For Elliptic Problems
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Multiscale problems, such as modelling flows through porous media or predicting the mechanical properties of composite materials, are of great interest in many scientific areas. Analytical models describing these phenomena are rarely available, and one mus ...
We give a direct construction of a specific central idempotent in the endomorphism algebra of a finite lattice T. This idempotent is associated with all possible sublattices of T which are totally ordered. A generalization is considered in a conjectural fa ...
In this paper, we carry out a systematic comparison between the theoretical properties of Spectral Element Methods and NURBS-based Isogeometric Analysis in its basic form, that is in the framework of the Galerkin method, for the approximation of the Poisso ...
The present work concerns the approximation of the solution map S associated to the parametric Helmholtz boundary value problem, i.e., the map which associates to each (real) wavenumber belonging to a given interval of interest the corresponding solution ...
The multiquery solution of parametric partial differential equations (PDEs), that is, PDEs depending on a vector of parameters, is computationally challenging and appears in several engineering contexts, such as PDE-constrained optimization, uncertainty qu ...
We explore upper bounds on the covering radius of non-hollow lattice polytopes. In particular, we conjecture a general upper bound of d/2 in dimension d, achieved by the "standard terminal simplices" and direct sums of them. We prove this conjecture up to ...
This semester project deals with the study of at fully clamped plates with various geome- tries (circular and square), piezoelectric properties and uniformly distributed load (normal to the surface). The stress distribution is analyzed in order to obtain a ...
We introduce a two-level preconditioner for the efficient solution of large scale saddle point linear systems arising from the finite element (FE) discretization of parametrized Stokes equations. This preconditioner extends the Multi Space Reduced Basis (M ...
A local adaptive discontinuous Galerkin method for convection-diffusion-reaction equations is introduced. Departing from classical adaptive algorithms, the proposed method is based on a coarse grid and iteratively improves the accuracy of the solution by s ...
In this work we introduce a two-level preconditioner for the efficient solution of large scale saddlepoint linear systems arising from the finite element (FE) discretization of parametrized Stokes equations.The proposed preconditioner extends the Multi Spa ...