Tailoring Copper Nanocrystals towards C-2 Products in Electrochemical CO2 Reduction
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In aqueous solutions, a charged surface causes the redistribution of nearby ions. The ion layers formed are known as the electrical double layer (EDL), and are widespread in many systems involving electrochemistry, colloidal science, biomedicine, and energ ...
The value of operando and in situ characterization methodologies for understanding electrochemical systems under operation can be inferred from the upsurge of studies that have reported mechanistic insights into electrocatalytic processes based on such mea ...
Electrochemical conversion of CO2 to fuels and valuable products is one pathway to reduce CO2 emissions. Electrolyzers using gas diffusion electrodes (GDEs) show much higher current densities than aqueous phase electrolyzers, yet models for multi-physical ...
The electrochemical CO2 reduction reaction (CO2RR) is envisioned to play a significant role in achieving carbon neutrality while contributing to storing renewable energies. Cu-based materials are among the most promising electrocatalysts. However, 16 diffe ...
Electrochemical CO2 reduction (eCO2RR) towards value-added chemicals, powered by renewable electricity, is a promising technology for storing the intermittent renewable energy in the form of chemical bonds. Among the various products of eCO2RR, multi-carbo ...
The electrochemical CO2 reduction reaction (CO2RR) has the potential to mitigate the rising CO2 levels while storing renewable energy in chemical bonds. Copper is the only single metal electrocatalyst producing high energy dense hydrocarbons, albeit into 1 ...
The ability to tailor make materials with atomic scale precision is crucial for understanding the sensitivities of their performance parameters and for achieving the design specification corresponding to optimal device operation. Herein, this topic is disc ...
Rational design of non-noble metal electrocatalysts with high intrinsic activity for both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is extremely impressive for sustainable electrocatalytic water splitting systems. However, i ...
The reduction of carbon dioxide to desirable products is an urgent goal in favour of the environment, the energy-cycle and mankind. We report the electrochemical reduction of CO2 to carbon monoxide by means of the ho-mogeneous electrocatalyst (1), [Ru(bpy) ...
During electrochemical carbon dioxide (CO2) reduction on copper electrodes in an aqueous electrolyte, one of the key challenges is the competition between hydrogen evolution and CO2 reduction, especially under large current density. Here, micro-electrodes ...