**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# The Interface Control Domain Decomposition Method For Stokes-Darcy Coupling

Abstract

The interface control domain decomposition (ICDD) method of Discacciati, Gervasio, and Quarteroni [SIAM J. Control Optim., 51 (2013), pp. 3434-3458, doi:10.1137/120890764; J. Coupled Syst. Multiscale Dyn., 1 (2013), pp. 372-392, doi:10.1166/jcsmd.2013.1026] is proposed here to solve the coupling between Stokes and Darcy equations. According to this approach, the problem is formulated as an optimal control problem whose control variables are the traces of the velocity and the pressure on the internal boundaries of the subdomains that provide an overlapping decomposition of the original computational domain. A theoretical analysis is carried out, and the well-posedness of the problem is proved under certain assumptions on both the geometry and the model parameters. An efficient solution algorithm is proposed, and several numerical tests are implemented. Our results show the accuracy of the ICDD method, its computational efficiency, and robustness with respect to the different parameters involved (grid size, polynomial degrees, permeability of the porous domain, thickness of the overlapping region). The ICDD approach turns out to be more versatile and easier to implement than the celebrated model based on the Beavers, Joseph, and Saffman coupling conditions.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts

Loading

Related publications

Loading

Related concepts (15)

Numerical analysis

Numerical analysis is the study of algorithms that use numerical approximation (as opposed to symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathema

Problem solving

Problem solving is the process of achieving a goal by overcoming obstacles, a frequent part of most activities. Problems in need of solutions range from simple personal tasks (e.g. how to turn on an a

Parameter

A parameter (), generally, is any characteristic that can help in defining or classifying a particular system (meaning an event, project, object, situation, etc.). That is, a parameter is an element

Related publications (8)

Loading

Loading

Loading

In this paper we consider the coupling between two diffusion-reaction problems, one taking place in a three-dimensional domain Ω, the other in a one-dimensional subdomain Λ. This coupled problem is the simplest model of fluid flow in a three-dimensional porous medium featuring fractures that can be described by one-dimensional manifolds. In particular this model can provide the basis for a multiscale analysis of blood flow through tissues, in which the capillary network is represented as a porous matrix, while the major blood vessels are described by thin tubular structures embedded into it: in this case, the model allows the computation of the 3D and 1D blood pressures respectively in the tissue and in the vessels. The mathematical analysis of the problem requires non-standard tools, since the mass conservation condition at the interface between the porous medium and the one-dimensional manifold has to be taken into account by means of a measure term in the 3D equation. In particular, the 3D solution is singular on Λ. In this work, suitable weighted Sobolev spaces are introduced to handle this singularity: the well-posedness of the coupled problem is established in the proposed functional setting. An advantage of such an approach is that it provides a Hilbertian framework which may be used for the convergence analysis of finite element approximation schemes. The investigation of the numerical approximation will be the subject of a forthcoming work.

2008In this work, two problems linked to glacier modeling are investigated. We propose an optimisation method for studying the flow of the ice and we present a numerical study about glacier thermal phenomena. In the first chapter of this thesis, we expose the models of these two problems. On one hand, we note that the boundary conditions on the bedrock are misunderstood, which explains it is difficult to obtain an accurate simulation of the motion of the ice. Also we establish a mathematical model where the bedrock boundary conditions depend on a control parameter. The aim of this study is to minimize a cost functional describing the difference between the computed velocity at the surface and the measure done. We study the cost functional with respect to the control parameter and we detail an optimisation method to solve the optimal control problem. On the other hand, we introduce two thermodynamical model governing the temperature and the water content field. The models correspond to a Stefan problem for the temperature and a convection-diffusion equation for the water content. The second chapter deals with the numerical resolution of the optimisation problem. First, a Finite Element Method (FEM) is described to solve the partial differential equations. Then, the algorithms used for the optimal control problem are detailed. Finally, this techniques are applied on two glaciers : Griesgletcher for 2D and Storglaciaren for 3D. The third chapter deals with the numerical resolution of the temperature and the water content models. A FEM is used for each problem. Concerning the temperature problem, the Stefan problem is numerically solved and the results allow to detect a free surface between the temperated ice and the cold ice. The water content field is also simulated. Numerical results are discussed on the Storglaciaren.

The subject of the present thesis is an optimal prediction problem concerning the ultimate maximum of a stable Lévy process over a finite interval of time. Such "optimal prediction" problems are of both theoretical and practical interest, in particular they have applications in finance. For instance, suppose that an investor has a long position in one financial asset, whose price is modelled by some stochastic process. The investor's objective is to determine a "best moment" at which to close out the position and to sell the asset at the highest possible price. This optimal decision must be based on continuous observations of the asset price performance and only on the information accumulated to date. Hence, the investor should use a prediction (forecasting) of the future evolution of the price of the financial security. We examine this problem in the case where the asset price is modelled by a Lévy process. Indeed, during the last several years, the application of Lévy processes in the modelling financial asset returns has become one of the active research directions in quantitative finance. Thus, this thesis contains suitable new results concerning Lévy processes. We derive the law of the supremum process associated with a strictly stable Lévy process with no negative jumps which is not a subordinator. We note that the latter problem dates back to 1973. In particular, we show that the probability density function of the supremum process can be expressed using an explicit power series representation or via an integral representation. We also derive the infinitesimal generator of the reflected process associated with a general strictly stable Lévy process. Throughout this thesis, we apply the theory of optimal stopping, the methods of fractional differential calculus, and some results from fluctuation theory. Implementing these theories in the context of Lévy processes requires the development of specific analytical results. In the case where the asset price is modelled by a spectrally positive stable Lévy process, we describe the optimal strategy under certain conditions on the model parameters. The optimal strategy is of the following form: the investor must stop the observation of the price process and sell the asset as soon as the associated reflected process crosses for the first time a particular stopping boundary. We also provide numerical estimates and simulation examples of the results obtained by using this strategy.