Plasmon Induced Transparency with Asymmetric pi-Shaped Metamaterials
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We discuss here potential venues for applications and exotic features of quantum metamaterials. We explore the coupling of conventional electromagnetic metamaterials with quantum emitters and the wave properties of quantum metamaterials obtained by tailori ...
We identify a route towards achieving a negative index of refraction at optical frequencies based on coupling between plasmonic waveguides that support backwards waves. We show how modal symmetry can be exploited in metal-dielectric waveguide pairs to achi ...
Engineered optical metamaterials present a unique platform for biosensing applications owing to their ability to confine light to nanoscale regions and to their spectral selectivity. Infrared plasmonic metamaterials are especially attractive because their ...
We present an approach for rational design and optimization of plasmonic arrays for ultrasensitive surface enhanced infrared absorption (SEIRA) spectroscopy of specific protein analytes. Motivated by our previous work that demonstrated sub-attomole detecti ...
We present our recent work on a one-dimensional acoustic negative refractive index metamaterial based on the concept of dual transmission line extensively investigated in microwave engineering. The proposed structure consists of an acoustic waveguide perio ...
We experimentally investigate the optomechanical properties of a conventional two-dimensional suspended photonic crystal defect cavity. Particularly, we measure localized mechanical modes in the GHz regime exhibiting high values of the optomechanical vacuu ...
Ieee Service Center, 445 Hoes Lane, Po Box 1331, Piscataway, Nj 08855-1331 Usa2011
We introduce a novel bottom-up approach to fabricate by self assembly a metamaterial from metallic nanoparticles in a two-step process. In the first step, a metamaterial made of densely packed silver nanoparticles is required. The material dispersion with ...
We experimentally and numerically demonstrate a planar metamaterial consisting of two asymmetrically positioned pi-structures in a single unit that exhibits plasmonic analogue of electromagnetically induced transparency (EIT). Through the coupling of the c ...
We investigate experimentally metallic nanoparticle composites fabricated by bottom-up techniques as potential candidates for optical metamaterials. Depending on the plasmonic resonances sustained by individual NPs and their nanoscale organization into lar ...
Spie-Int Soc Optical Engineering, Po Box 10, Bellingham, Wa 98227-0010 Usa2012
Compared to near infra-red photonic crystal (PhC) band-edge lasers, achieving vertical emission with quantum cascade (QC) material operating in the THz range needs dedicated engineering because the TM polarized emission of QCLs favors in-plane emitting sch ...