Matrix decompositionIn the mathematical discipline of linear algebra, a matrix decomposition or matrix factorization is a factorization of a matrix into a product of matrices. There are many different matrix decompositions; each finds use among a particular class of problems. In numerical analysis, different decompositions are used to implement efficient matrix algorithms. For instance, when solving a system of linear equations , the matrix A can be decomposed via the LU decomposition.
SQLStructured Query Language (SQL) (ˌɛsˌkjuːˈɛl S-Q-L, sometimes ˈsiːkwəl "sequel" for historical reasons) is a domain-specific language used in programming and designed for managing data held in a relational database management system (RDBMS), or for stream processing in a relational data stream management system (RDSMS). It is particularly useful in handling structured data, i.e., data incorporating relations among entities and variables. Introduced in the 1970s, SQL offered two main advantages over older read–write APIs such as ISAM or VSAM.
Database theoryDatabase theory encapsulates a broad range of topics related to the study and research of the theoretical realm of databases and database management systems. Theoretical aspects of data management include, among other areas, the foundations of query languages, computational complexity and expressive power of queries, finite model theory, database design theory, dependency theory, foundations of concurrency control and database recovery, deductive databases, temporal and spatial databases, real-time databases, managing uncertain data and probabilistic databases, and Web data.
Spatial databaseA spatial database is a general-purpose database (usually a relational database) that has been enhanced to include spatial data that represents objects defined in a geometric space, along with tools for querying and analyzing such data. Most spatial databases allow the representation of simple geometric objects such as points, lines and polygons. Some spatial databases handle more complex structures such as 3D objects, topological coverages, linear networks, and triangulated irregular networks (TINs).
Rank (linear algebra)In linear algebra, the rank of a matrix A is the dimension of the vector space generated (or spanned) by its columns. This corresponds to the maximal number of linearly independent columns of A. This, in turn, is identical to the dimension of the vector space spanned by its rows. Rank is thus a measure of the "nondegenerateness" of the system of linear equations and linear transformation encoded by A. There are multiple equivalent definitions of rank. A matrix's rank is one of its most fundamental characteristics.
Symmetric matrixIn linear algebra, a symmetric matrix is a square matrix that is equal to its transpose. Formally, Because equal matrices have equal dimensions, only square matrices can be symmetric. The entries of a symmetric matrix are symmetric with respect to the main diagonal. So if denotes the entry in the th row and th column then for all indices and Every square diagonal matrix is symmetric, since all off-diagonal elements are zero. Similarly in characteristic different from 2, each diagonal element of a skew-symmetric matrix must be zero, since each is its own negative.
Machine learningMachine learning (ML) is an umbrella term for solving problems for which development of algorithms by human programmers would be cost-prohibitive, and instead the problems are solved by helping machines 'discover' their 'own' algorithms, without needing to be explicitly told what to do by any human-developed algorithms. Recently, generative artificial neural networks have been able to surpass results of many previous approaches.
Unitary matrixIn linear algebra, an invertible complex square matrix U is unitary if its conjugate transpose U* is also its inverse, that is, if where I is the identity matrix. In physics, especially in quantum mechanics, the conjugate transpose is referred to as the Hermitian adjoint of a matrix and is denoted by a dagger (†), so the equation above is written For real numbers, the analogue of a unitary matrix is an orthogonal matrix. Unitary matrices have significant importance in quantum mechanics because they preserve norms, and thus, probability amplitudes.
Rank factorizationIn mathematics, given a field , nonnegative integers , and a matrix , a rank decomposition or rank factorization of A is a factorization of A of the form A = CF, where and , where is the rank of . Every finite-dimensional matrix has a rank decomposition: Let be an matrix whose column rank is . Therefore, there are linearly independent columns in ; equivalently, the dimension of the column space of is . Let be any basis for the column space of and place them as column vectors to form the matrix .
Temporal databaseA temporal database stores data relating to time instances. It offers temporal data types and stores information relating to past, present and future time. Temporal databases can be uni-temporal, bi-temporal or tri-temporal. More specifically the temporal aspects usually include valid time, transaction time or decision time. Valid time is the time period during or event time at which a fact is true in the real world. Transaction time is the time at which a fact was recorded in the database.