Low-rank methods for parameter-dependent eigenvalue problems and matrix equations
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Recursive blocked algorithms have proven to be highly efficient at the numerical solution of the Sylvester matrix equation and its generalizations. In this work, we show that these algorithms extend in a seamless fashion to higher-dimensional variants of g ...
In this paper, we extend the work of Günther-Hanssen (2020) in applying the INTERNODES method to problems in contact mechanics. In an initial work on this topic, Günther-Hanssen showed that the INTERNODES method could be successfully applied but also revea ...
In this work, we consider two types of large-scale quadratic matrix equations: Continuous-time algebraic Riccati equations, which play a central role in optimal and robust control, and unilateral quadratic matrix equations, which arise from stochastic proc ...
The paper introduces a novel, hierarchical preconditioner based on nested dissection and hierarchical matrix compression. The preconditioner is intended for continuous and discontinuous Galerkin formulations of elliptic problems. We exploit the property th ...
Matrices with hierarchical low-rank structure, including HODLR and HSS matrices, constitute a versatile tool to develop fast algorithms for addressing large-scale problems. While existing software packages for such matrices often focus on linear systems, t ...
Matrix equations of the kind A(1)X(2)+A(0)X+A(-1)=X, where both the matrix coefficients and the unknown are semi-infinite matrices belonging to a Banach algebra, are considered. These equations, where coefficients are quasi-Toeplitz matrices, are encounter ...
Block Krylov subspace methods (KSMs) comprise building blocks in many state-of-the-art solvers for large-scale matrix equations as they arise, for example, from the discretization of partial differential equations. While extended and rational block Krylov ...
Matrices with hierarchical low-rank structure, including HODLR and HSS matrices, constitute a versatile tool to develop fast algorithms for addressing large-scale problems. While existing software packages for such matrices often focus on linear systems, t ...
Linear matrix equations, such as the Sylvester and Lyapunov equations, play an important role in various applications, including the stability analysis and dimensionality reduction of linear dynamical control systems and the solution of partial differentia ...
We analyze an expansion of the generalized block Krylov subspace framework of [Electron.\ Trans.\ Numer.\ Anal., 47 (2017), pp. 100-126]. This expansion allows the use of low-rank modifications of the matrix projected onto the block Krylov subspace and con ...