Publication

Numerical homogenization and model order reduction for multiscale inverse problems

Assyr Abdulle, Andrea Di Blasio
2016
Journal paper
Abstract

A new numerical method based on numerical homogenization and model order reduction is introduced for the solution of multiscale inverse problems. We consider a class of elliptic problems with highly oscillatory tensors that varies on a microscopic scale. We assume that the micro structure is known and seek to recover a macroscopic scalar parametrization of the microscale tensor (e.g. volume fraction). Departing from the full fine scale model that would require mesh resolution for the forward problem down to the finest scale, we solve the inverse problem for a coarse model obtained by numerical homogenization. The input data, i.e., measurement from the Dirichlet to Neumann map, are solely based on the original fine scale model. Furthermore, reduced basis techniques are used to avoid computing effective coefficients for the forward solver at each integration point of the macroscopic mesh. Uniqueness and stability of the effective inverse problem is established based on standard assumptions for the fine scale model and a link with this latter model is established by means of G-convergence. A priori error estimates are established for our method. Numerical experiments illustrate the efficiency of the proposed scheme and confirm our theoretical finding.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.