Quantum limits on measurement and control of a mechanical oscillator
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Thermal motion of a room-temperature mechanical resonator typically dominates the quantum backaction of its position measurement. This is a longstanding barrier for exploring cavity optomechanics at room temperature. In order to enter the quantum regime of ...
Quantum computers have the potential to surpass conventional computing, but they are hindered by noise which induces errors that ultimately lead to the loss of quantum information. This necessitates the development of quantum error correction strategies fo ...
In this thesis, we give new protocols that offer a quantum advantage for problems in ML, Physics, and Finance.Quantum mechanics gives predictions that are inconsistent with local realism.The experiment proving this fact (Bell, 1964) gives a quantum protoco ...
Measuring the size of cellulose nanomaterials can be challenging, especially in the case of branched and entangled cellulose nanofibrils (CNFs). The International Organization for Standardization, Technical Committee 6, Task Group 1-Cellulosic Nanomaterial ...
Fields of technology as diverse as microwave filter construction, characterization of material interfaces with atomic precision, and detection of gravitational waves from astronomical sources employ mechanical resonators at their core. The utility of mecha ...
We propose a practical implementation of a two-qubit entanglement engine which denotes a scheme to generate quantum correlations through purely dissipative processes. On a diamond platform, the electron spin transitions of two nitrogen-vacancy (NV) centers ...
Quantum optics studies how photons interact with other forms of matter, the understanding of which was crucial for the development of quantum mechanics as a whole. Starting from the photoelectric effect, the quantum property of light has led to the develop ...
Zero knowledge plays a central role in cryptography and complexity. The seminal work of Ben-Or et al. (STOC 1988) shows that zero knowledge can be achieved unconditionally for any language in NEXP, as long as one is willing to make a suitable physical assu ...
Our ability to generate new distributions of light has been remarkably enhanced in recent years. At the most fundamental level, these light patterns are obtained by ingeniously combining different electromagnetic modes. Interestingly, the modal superpositi ...
Single-photon light detection and ranging (LiDAR) is a key technology for depth imaging through complex environments. Despite recent advances, an open challenge is the ability to isolate the LiDAR signal from other spurious sources including background lig ...