**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Calculus of Variations for Differential Forms

Abstract

In this thesis we study calculus of variations for differential forms. In the first part we develop the framework of direct methods of calculus of variations in the context of minimization problems for functionals of one or several differential forms of the type, $\int_{\Omega} f(d\omega), \quad \int_{\Omega} f(d\omega_{1}, \ldots, d\omega_{m}) \quad \text{ and } \int_{\Omega} f(d\omega, \delta\omega).$ We introduce the appropriate convexity notions in each case, called \emph{ext. polyconvexity}, \emph{ext. quasiconvexity} and \emph{ext. one convexity} for functionals of the type $\int_{\Omega} f(d\omega),$ \emph{vectorial ext. polyconvexity}, \emph{vectorial ext. quasiconvexity} and \emph{vectorial ext. one convexity} for functionals of the type $\int_{\Omega} f(d\omega_{1}, \ldots, d\omega_{m})$ and \emph{ext-int. polyconvexity}, \emph{ext-int. quasiconvexity} and \emph{ext-int. one convexity} for functionals of the type $\int_{\Omega} f(d\omega, \delta\omega).$ We study their interrelationships and the connections of these convexity notions with the classical notion of polyconvexity, quasiconvexity and rank one convexity in classical vectorial calculus of variations. We also study weak lower semicontinuity and weak continuity of these functionals in appropriate spaces, address coercivity issues and obtain existence theorems for minimization problems for functionals of one differential forms.\smallskip In the second part we study different boundary value problems for linear, semilinear and quasilinear Maxwell type operator for differential forms. We study existence and derive interior regularity and $L^{2}$ boundary regularity estimates for the linear Maxwell operator $\delta (A(x)d\omega) = f$ with different boundary conditions and the related Hodge Laplacian type system $\delta (A(x)d\omega) + d\delta\omega = f,$ with appropriate boundary data. We also deduce, as a corollary, some existence and regularity results for div-curl type first order systems. We also deduce existence results for semilinear boundary value problems \begin{align*} \left\lbrace \begin{gathered} \delta ( A (x) ( d\omega ) ) + f( \omega ) = \lambda\omega \text{ in } \Omega, \ \nu \wedge \omega = 0 \text{ on } \partial\Omega. \end{gathered} \right. \end{align*} Lastly, we briefly discuss existence results for quasilinear Maxwell operator \begin{align*} \delta ( A ( x, d \omega ) ) = f , \end{align*} with different boundary data.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts

Loading

Related publications

Loading

Related publications (4)

Related concepts (16)

Differential form

In mathematics, differential forms provide a unified approach to define integrands over curves, surfaces, solids, and higher-dimensional manifolds. The modern notion of differential forms was pione

Calculus

Calculus is the mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithmetic operations.
It has two major br

Vector calculus

Vector calculus, or vector analysis, is concerned with differentiation and integration of vector fields, primarily in 3-dimensional Euclidean space \mathbb{R}^3. The term "vector calcul

Loading

Loading

Loading

In this thesis, we study two distinct problems.
The first problem consists of studying the linear system of partial differential equations which consists of taking a k-form, and applying the exterior derivative 'd' to it and add the wedge product with a 1-form 'a'. The study of this differential operator is linked to the study of the multiplication by a two form, that is the system of linear equations where we take a k-form and apply the exterior wedge product by 'da', the exterior derivative of 'a'. We establish links between the partial differential equation and the linear system.
The second problem is a generalization of the symmetric gradient and the curl equation. The equation of a symmetric gradient consists of taking a vector field, apply the gradient and then add the transpose of the gradient, whereas in the curl equation we subtract the transpose of the gradient. Both can be seen as an equation of the form A * grad u + (grad u)t * A, where A is a symmetric matrix for the case of the symmetric gradient and skew symmetric for the curl equation. We generalize to the case where A verifies no symmetry assumption and more significantly add a Dirichlet condition on the boundary.

Ana Margarida Fernandes Ribeiro

In this thesis we deal with three different but connected questions. Firstly (cf. Chapter 2) we make a systematic study of the generalized notions of convexity for sets. We study the notions of polyconvex, quasiconvex and rank one convex set. We remark that these notions are nowadays well known in the context of functions, but not in the context of sets. Following the classical approach, we give precise definitions of generalized convex sets and we study several issues, in this generalized sense, as the concept of convex hull, Carathéodory and separation theorems and the notion of extremal point. Secondly we have studied some differential inclusions of the form The method we have used to solve this kind of problems is the Baire categories method developed by Dacorogna-Marcellini [14]. Known sufficient conditions for this problem are connected to the generalized convex hull of the set E. In Chapter 3, we compute the rank one convex hull of some matrix sets to obtain, in Chapter 4, existence results. Namely, we have considered the problem of finding u : Ω ⊂ Rn → RN with Dirichlet boundary condition such that Φ (Du(x)) ∈ {α, β}, a.e. x ∈ Ω, Φ being an arbitrary quasi-affine function. We have also considered the problem of finding u : Ω ⊂ Rn → Rn such that where λ1(Du) ≤...≤ λn(Du) are the singular values of Du ∈ Rn×n. Finally, in Chapter 5, we deal with several minimizing problems of the form Denoting by Qf the quasiconvex envelope of f, we verify that solving the equation Qf(Du(x)) = f(Du(x)), a.e. x ∈ Ω is, under some conditions, sufficient to ensure the existence of solution of (P). The differential inclusions that we consider in Chapter 4 are helpful to solve some equations of the form (2) and thus, it allows us to solve problems of type (P). In particular, we have considered the problem (P) with f(ξ) = g(Φ(ξ)), ∀ ξ ∈ RN×n Φ being an arbitrary quasi-affine function.

,

While phi-divergences have been extensively studied in convex analysis, their use in optimization problems often remains challenging. In this regard, one of the main shortcomings of existing methods is that the minimization of phi-divergences is usually performed with respect to one of their arguments, possibly within alternating optimization techniques. In this paper, we overcome this limitation by deriving new closed-form expressions for the proximity operator of such two-variable functions. This makes it possible to employ standard proximal methods for efficiently solving a wide range of convex optimization problems involving phi-divergences. In addition, we show that these proximity operators are useful to compute the epigraphical projection of several functions. The proposed proximal tools are numerically validated in the context of optimal query execution within database management systems, where the problem of selectivity estimation plays a central role. Experiments are carried out on small to large scale scenarios.