Degrees of freedom (mechanics)In physics, the degrees of freedom (DOF) of a mechanical system is the number of independent parameters that define its configuration or state. It is important in the analysis of systems of bodies in mechanical engineering, structural engineering, aerospace engineering, robotics, and other fields. The position of a single railcar (engine) moving along a track has one degree of freedom because the position of the car is defined by the distance along the track.
Poinsot's ellipsoidIn classical mechanics, Poinsot's construction (after Louis Poinsot) is a geometrical method for visualizing the torque-free motion of a rotating rigid body, that is, the motion of a rigid body on which no external forces are acting. This motion has four constants: the kinetic energy of the body and the three components of the angular momentum, expressed with respect to an inertial laboratory frame. The angular velocity vector of the rigid rotor is not constant, but satisfies Euler's equations.
Hermitian symmetric spaceIn mathematics, a Hermitian symmetric space is a Hermitian manifold which at every point has an inversion symmetry preserving the Hermitian structure. First studied by Élie Cartan, they form a natural generalization of the notion of Riemannian symmetric space from real manifolds to complex manifolds. Every Hermitian symmetric space is a homogeneous space for its isometry group and has a unique decomposition as a product of irreducible spaces and a Euclidean space.
Space manufacturingSpace manufacturing is the production of tangible goods beyond Earth. Since most production capabilities are limited to low Earth orbit, the term in-orbit manufacturing is also frequently used. There are several rationales supporting in-space manufacturing: The space environment, in particular the effects of microgravity and vacuum, enable the research of and production of goods that could otherwise not be manufactured on Earth.
Cayley planeIn mathematics, the Cayley plane (or octonionic projective plane) P2(O) is a projective plane over the octonions. The Cayley plane was discovered in 1933 by Ruth Moufang, and is named after Arthur Cayley for his 1845 paper describing the octonions. In the Cayley plane, lines and points may be defined in a natural way so that it becomes a 2-dimensional projective space, that is, a projective plane. It is a non-Desarguesian plane, where Desargues' theorem does not hold.
Effect of spaceflight on the human bodyVenturing into the environment of space can have negative effects on the human body. Significant adverse effects of long-term weightlessness include muscle atrophy and deterioration of the skeleton (spaceflight osteopenia). Other significant effects include a slowing of cardiovascular system functions, decreased production of red blood cells (space anemia), balance disorders, eyesight disorders and changes in the immune system.